
317

Efficient	Crowd	Simulation	
for	Mobile	Games
Graham Pentheny

24

24.1	 	Introduction

Crowd simulation is a topic of ongoing exploration and experimentation in the game AI
industry [Pelechano et al. 07, Sung et al. 04]. Modern games are filled with more and
more AI-controlled agents. It is therefore imperative to create a movement system that is
realistic , robust, and designer-friendly.

Traditional pathfinding approaches compute separate paths for individual agents, even
though many paths may have similar sections. These redundant path calculations inhibit
simulations of large numbers of units on mobile hardware.

The mobile tower defense game Fieldrunners 2 used a combination of vector flow fields
and steering behaviors to efficiently simulate thousands of agents, referred to as units. This
article will describe the systems of flow-field generation, flow sampling, and unit move-
ment employed by Fieldrunners 2. The process of constructing and balancing a dynamic
crowd simulation system will be described in detail from the ground up.

24.1	 Introduction
24.2	 Grid
24.3	 Flow	Field
24.4	 Generating	the	Flow	Field
24.5	 Units
24.6	 Adjusting	Unit	

Movement Values

24.7	 Mobile	Limitations	
and	Performance	
Considerations

24.8	 Benefits
24.9	 Conclusion	and	

Future Work

318 Part III. Movement and Pathfinding

24.2	 	Grid

The grid provides a discretization of the game world and defines the areas within which
units may travel. For Fieldrunners 2, a grid cell was sized slightly wider than the widest unit,
so that every computed path was traversable by every unit. Each grid cell can either be open,
indicating that a unit may pass through it, or blocked indicating that the cell is impassible.

24.3	 	Flow	Field

Units move through the grid following a static vector flow field. The flow field represents
the optimal path direction at every cell in the grid, and is an approximation of a con-
tinuous flow function. Given a set of destination points, the flow function defines a vector
field of normalized vectors, indicating the direction of the optimal path to the nearest
destination. The flow function is similar to common methods for describing flows in fluid
 dynamics [Cabral and Leedom 93], with the difference that all flow vectors are normalized.
Given this definition, we can define a flow field to be a discretization of a flow function.

Flow fields guide units to the nearest destination in the same manner as a standard
pathfinding system; however, the units’ pathing information is encoded in a flow field,
removing the need for units to compute paths individually.

The vector flow field is specific to each set of potential destinations and thus can be used
by all units sharing a set of destination points. Because the flow field expresses pathing
information for the entire game world, it does not need to be updated unless the pathable
areas of the grid or the set of destination points changes.

For example, if a bridge across a river is destroyed, the flow field only needs to be recom-
puted once to account for the change to pathable areas. Units following that flow field will
implicitly change their respective paths in response to the change in the game world.

The flow field is comprised of a single normalized vector for each grid cell, as shown in
Figure 24.1. A flow field and a unique set of destination points together are called a path.
For example, a path corresponding to an m by n grid is a set of m*n normalized vectors
and a set of one or more destination points. Due to the number of vectors required to
 represent the flow function, this approach can potentially yield prohibitively high memory
usage. Memory consumption is linearly dependent on the product of the number of grid
cells and the number of independent paths. Maps in Fieldrunners 2 were restricted to three
unique paths at most, and map grid sizes were small enough that flow-field memory usage
did not prove to be a significant issue.

The grid size, and thus the resolution of the flow field, does not need to be high to
yield believable movement characteristics. Using bilinear interpolation, a continuous flow
function can be approximated from the four closest vectors in the low-resolution flow
field [Alexander 06]. As the grid resolution increases, the flow field computes a higher and
higher sampling of the same flow function. Bilinear interpolation of vectors in a flow field
improves the continuity and organicity of unit paths.

24.4	 	Generating	the	Flow	Field

The flow field is generated via a modified traditional point-to-point pathfinding
function. The algorithm used in Fieldrunners 2 was based on Dijkstra’s algorithm

31924. Efficient Crowd Simulation for Mobile Games

Dijkstra [59]; however, alternate pathfinding algorithms are aptly capable of generating
a flow field.

The algorithm used in Fieldrunners 2 begins by adding the grid cells for each of the
paths’ destinations to the open list. As the normal iterations of Dijkstra’s algorithm prog-
ress, nodes are removed from the open list and linked to a nearby cell with the lowest
computed path cost. As cells from the open list are expanded, the flow vector for the newly
expanded cell is set to point in the direction of the cell it was linked to. Instead of termi-
nating when a path is found, the algorithm expands all traversable cells added to the open
list, assigning a flow vector to each, and terminating when the open list is empty. The demo
code included with this article on the book’s website (http://www.gameaipro.com) con-
tains a full implementation of flow-field generation within the GenerateFlowField()
function.

This preceding algorithm is used to generate a flow field for each path every time a
change is made to either the path’s destination set or the traversable area of the grid.

24.5	 	Units

Fieldrunners 2 required a crowd dynamics system capable of supporting dozens of differ-
ent units, each with unique movement characteristics. Units in Fieldrunners 2 are simple
autonomous agents based on Craig Reynolds’ Boid model [Reynolds 99]. Each unit has a
set of both physical attributes and steering behaviors that together control its movement.

Figure	24.1

A	flow	field	for	a	sample	environment.	The	flow	for	a	given	cell	 is	shown	as	a	 line	starting	
at	the	center	of	the	cell	and	pointing	in	the	flow	direction.	Blocked	cells	are	outlined	with	
a	 thick	 black	 line.	 This	 particular	 flow	 field	 moves	 characters	 around	 the	 two	 rectangle	
obstacles	and	towards	a	destination	along	the	bottom	edge	of	the	environment.

320 Part III. Movement and Pathfinding

The set of steering behaviors and their implementations are consistent across all unit
types. A unit’s physical attributes (e.g., total mass, size, agility) define its unique move-
ment characteristics.

Units in Fieldrunners 2 are represented as point-masses with respective velocities. A unit’s
steering behaviors control its point-mass by applying a set of forces to it. The prioritized com-
bination of these steering forces imparts an acceleration on the unit, resulting in realistic,
perceptively intelligent movement. Steering behaviors are widely used in games to control
unit movement, and are described in numerous publications [Reynolds 99, Millington and
Funge 09]. In Fieldrunners 2, specific modifications were made to the standard implemen-
tations of some steering behaviors to support more dynamic unit interactions.

Units in Fieldrunners 2 use a limited, greedy, prioritized summation of five steering
behaviors (four of which are shown in Figure 24.2). The five behaviors listed in descending
order of priority include flow-field following, obstacle avoidance, separation, alignment,
and cohesion. In each simulation step, a unit is only influenced by a specified total magni-
tude of steering forces. The forces resulting from steering behaviors are added to the run-
ning total in priority order until the maximum magnitude has been reached. Any steering
forces that have not been added to the total are ignored.

The separation, alignment, and cohesion steering forces together describe flocking
behavior [Reynolds 99]. In Fieldrunners 2, flocking is used to encourage units to move
cohesively as a group when near other units.

Obstacle avoidance helps faster units maneuver intelligently around slower units. The
implementations of the obstacle avoidance and separation behaviors differ slightly from
Reynolds’ original implementation [Reynolds 99]. The obstacle avoidance steering behav-
ior generates a “side stepping” force perpendicular to the unit’s velocity, and proportional
to the position and relative velocity of the neighbor. The force generated by the separa-
tion steering behavior is scaled by the ratio of the kinetic energy of the neighbor to the
kinetic energy of the unit the force is applied to. Units with smaller masses and velocities
(presumably being more nimble) will more readily yield to larger, less maneuverable units.

Finally, flow-field following moves the unit in the direction specified by the flow field.
The flow-field direction at the position of the unit is computed by linearly interpolating
the four closest flow vectors.

Alignment

Cohesion
Neighbor

Separation

Obstacle Avoidance

Velocity

Figure	24.2

This	figure	shows	all	the	steering	forces	acting	on	the	left	unit,	with	the	exception	of	flow-field	
following.

32124. Efficient Crowd Simulation for Mobile Games

The mass, maximum force, maximum velocity, and neighbor radius attributes describe
a unit’s unique behavior. The mass is used to calculate the unit’s kinetic energy in addition
to the accelerations resulting from steering behaviors. The maximum force value dictates
the maximum combined magnitude of steering forces that can influence the unit in a
single simulation step. A unit’s agility value is defined as the ratio of a unit’s maximum
force to its mass—the unit’s maximum acceleration. Finally, the maximum velocity attri-
bute limits the magnitude of the unit’s velocity, and the neighbor radius attribute restricts
the set of neighbors used in calculating flocking forces to those within a certain radius.

24.6	 	Adjusting	Unit	Movement	Values

It is necessary to find the correct set of attribute values for a unit to yield a desired behavior.
In simulations based on steering behaviors, this is notoriously difficult and arduous. A
systematic approach was developed and used by designers to balance unit attributes in
Fieldrunners 2. For reasons of simplicity, all units used an identical set of weighted, priori-
tized steering behaviors, relying on their physical attributes for unique behavior.

First, the maximum velocity attribute is set to a reasonable value, and the remaining
attributes are given an arbitrary base value. Because the maximum velocity of a unit is
most easily visualized, it provides a good starting point. The remaining values will each
be adjusted individually.

Next, the maximum force value is adjusted to yield believable movement characteris-
tics for a single unit of that type. Because the maximum force affects the agility of the unit,
it will alter visual aspects such as turning speed and braking.

Given a group of homogeneous units, the result of changes to the unit’s neighbor radius
attribute can easily be observed in isolation. Smaller neighbor radiuses will allow units to
cluster more closely, while increasing the neighbor radius will spread units out.

Finally, all units’ masses are adjusted relative to each other. When adjusting the mass
of a unit, its agility must remain constant, or the previously adjusted movement charac-
teristics of the unit will change.

24.7	 	Mobile	Limitations	and	Performance	Considerations

The largest runtime performance issue in this approach is the generation and processing
of neighboring unit lists used in computing the flocking steering forces. In Fieldrunners 2,
performance issues were mitigated through use of a loose quad tree [Ulrich 00] to reduce
the neighboring unit search space. Units with large neighbor radiuses will yield a large set
of neighbors to consider, decreasing performance. Combining the calculations of flocking
forces can provide measurable performance improvements, as intermediary values can be
reused in subsequent computations.

Floating-point operations on mobile processors can be slow, and minimizing the number
of operations required in pathing and movement calculations can also yield improvements.
Storing scalars that represent vector magnitudes as their respective squared values was a
common optimization in Fieldrunners 2. This allowed vector length comparisons to use
the squared vector magnitude, removing the need to compute many floating-point square
root values.

322 Part III. Movement and Pathfinding

Flow-field-based systems provide the greatest benefits when large numbers of units
need to navigate to a set of common goals. A separate flow field is required for each unique
set of goal positions among units. As the number of unique sets of goals increases, the
 calculations and memory required to maintain the necessary flow fields can become
prohibitively complex and large. The memory required to represent a flow field grows
linearly with the number of grid cells, while the pathfinding computational complexity is
equivalent to the worst-case complexity of the pathfinding algorithm used. In the case of
Fieldrunners 2, Dijkstra’s algorithm was used, which yielded quasi-linear time complexity
dependent on the number of grid cells. One approach to minimizing flow-field memory
consumption is to save flow vectors as a specific rotation of the “north” vector (usually
<0,1>). When accessing the flow direction for a given cell, the known basis vector is recre-
ated and rotated the amount specific to that cell. Alternatively, if flow vectors are restricted
to specific directions (e.g., cardinal directions), they can be stored as a one byte integer
where its value corresponds to the specific potential direction.

As mobile hardware moves towards multicore processors, correct utilization of multi-
threaded algorithms becomes important. The problem of generating multiple flow fields
can easily be modeled as a parallel process. The mutual independence of flow fields allows
each to be computed in parallel with the rest, potentially in different threads or processes.
The composition and independence of steering behaviors allows them to be computed
in parallel as well, so long as they’re accumulated and applied to the unit collectively.
Together, the intrinsic parallelizability of flow-field generation and steering behavior
 computation make multithreading optimizations trivial.

24.8	 	Benefits

This approach to unit movement was chosen for Fieldrunners 2 due to a specific set of
unique benefits that it provided. Pathing information is precomputed and stored in the
flow field; thus it is only ever calculated once for a given world configuration. This prop-
erty of flow fields offered notable performance benefits in Fieldrunners 2, as the pathability
of the world is modified infrequently.

Pathing information for all locations in the world is computed in a single pass, yielding
a grid size-based complexity comparable to Dijkstra’s algorithm. Compared to traditional
pathfinding methods where the time complexity is linear with respect to the number
of units, this approach is constant with respect to the number of units simulated. For
Fieldrunners 2, this enabled complex scenarios with thousands of independent and diverse
units to run on mobile devices at interactive frame rates.

Steering behavior-based approaches like this one provide great flexibility in defining
unique unit behavior. Steering behaviors rely on composition to define complex behavior,
making specializations and additions modular and encapsulated. The composition of a
new steering behavior or the modification of an existing steering behavior can both easily
be applied to a unit to define a unique movement style.

24.9	 	Conclusion	and	Future	Work

The system used in Fieldrunners 2 used static vector flow fields and steering behaviors to
simulate thousands of units on mobile devices. Unlike traditional pathfinding techniques,

32324. Efficient Crowd Simulation for Mobile Games

the proposed navigation system minimizes redundant path calculations by encoding
pathing information from all areas in a vector flow field.

Flow-field-based pathfinding techniques provide a unique way to reduce redundant
pathfinding computations by computing the optimal path from every point. The flow-field
generation technique used in Fieldrunners 2 was based on Dijkstra’s algorithm for simplicity
and design reasons. More advanced pathfinding algorithms, such as Theta* [Nash et al. 07],
can generate smoother, more organic flow fields. Flow fields can be extended to incorpo-
rate alternate motivations and concerns for units by blending static and dynamic flow
fields [Alexander 06]. Despite this potential improvement, static flow fields and steering
 behaviors provided a robust, realistic crowd simulation for Fieldrunners 2.

References

[Alexander 06] B. Alexander. “Flow fields for movement and obstacle avoidance.” In AI
Game Programming Wisdom 3, edited by Steve Rabin, pp. 159–172. Boston, MA:
Charles River Media, 2006.

[Cabral and Leedom 93] B. Cabral and L. Leedom. “Imaging vector fields using line integral
convolution.” SIGGRAPH ’93 Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 263–270, 1993. Available online (http://www.
cg.inf.ethz.ch/teaching/scivis_common/Literature/CabralLeedom93.pdf).

[Dijkstra 59] E. Dijkstra. “A note on two problems in connexion with graphs.” Numerische
Mathematik 1, pp. 261–271, 1959. Available online (http://www-m3.ma.tum.de/
foswiki/pub/MN0506/WebHome/dijkstra.pdf).

[Millington and Funge 09] I. Millington and J. Funge. Artificial Intelligence for Games,
pp. 55–95. Burlington, MA: Morgan Kaufmann, 2009.

[Nash et al. 07] A. Nash, K. Daniel, S. Koenig, and A. Felner. “Theta*: Any-angle path planning on
grids.” Proceedings of the AAAI Conference on Artificial Intelligence (2007), pp. 1177–1183,
2007. Available online (http://idm-lab.org/bib/abstracts/papers/aaai07a.pdf).

[Pelechano et al. 07] N. Pelechano, J. M. Allbeck, and N. I. Badler. “Controlling individ-
ual agents in high-density crowd simulation.” SCA ’07 Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108, 2007.
Available online (http://www.computingscience.nl/docs/vakken/mpp/papers/12.pdf).

[Reynolds 99] C. W. Reynolds. “Steering behaviors for autonomous characters.” Proceed-
ings of the Game Developers Conference (1999), pp. 763–782, 1999. Available online
(http://www.red3d.com/cwr/papers/1999/gdc99steer.pdf).

[Sung et al. 04] M. Sung, M. Gleichar, and S. Chenney. “Scalable behaviors for crowd simula-
tion.” Computer Graphics Forum, Volume 23, Issue 3, pp. 519–528. September 2004.
Available online (http://www.computingscience.nl/docs/vakken/mpp/papers/21.pdf).

[Ulrich 00] T. Ulrich. “Loose octrees.” In Game Programming Gems, edited by Mark DeLoura,
pp. 444–453. Hingham, MA: Charles River Media, 2000.

