
307

Crowd	Pathfinding	and	
Steering	Using	Flow	Field	Tiles
Elijah Emerson

23

23.1	 	Introduction

Crowd pathfinding and steering using flow field tiles is a technique that solves the com-
putational problem of moving hundreds to thousands of individual agents across massive
maps. Through the use of dynamic flow field tiles, a more modern steering pipeline can be
achieved with features such as obstacle avoidance, flocking, dynamic formations, crowd
behavior, and support for arbitrary physics forces, all without the heavy CPU burden of
repeatedly rebuilding individual paths for each agent. Furthermore, agents move instantly
despite path complexity, giving AI and players immediate feedback.

23.2	 	Motivation

While working on Supreme Commander 2, we were given the task of improving move-
ment and pathfinding behavior. As in many games with pathfinding, each unit in Supreme

23.1	 Introduction
23.2	 Motivation
23.3	 World	Layout
23.4	 The	Three	Field	Types
23.5	 Path	Requests
23.6	 The	Integrator
23.7	 The	Flow	Field	Cache
23.8	 Supporting	Dynamic	

Environments	and	Queries

23.9	 Cost	Stamp	Support
23.10	Source	Cost	Data
23.11	Different	Movement	Types
23.12	Steering	with	Flow	Fields
23.13	Walls	and	Physics
23.14	 Island	Fields
23.15	Minimizing	CPU	Footprint
23.16	Future	Work
23.17	Conclusion

308 Part III. Movement and Pathfinding

Commander would move along a fixed, one-way A* path. Eventually, units would collide
with other units, especially when they were moving in formation or moving into battle.
When paths cross and units collide, the existing code would stop the units and wait for the
conflict to resolve, rather than rebuilding a new path around the obstacle. This is because
rebuilding a path every time there is a collision turns into a compounding problem, espe-
cially in large battles, where the new path will likely lead to a second and third collision,
causing the game to grind to a halt. This behavior repeats across a thousand units, whose
controlling players are all frantically clicking at each other’s units, essentially begging for
them to clash and collide with each other.

To overcome this path rebuilding problem, all movement was engineered to prefer to
stay on the same path, resulting in limited physics, formations, AI, hit reaction, and so on.
In this way, the pathfinding was limiting the entire user experience.

Because of Supreme Commander’s one-track pathfinding solution, players would baby-
sit their units as they moved across the map. They would spend their time watching and
clicking, watching and clicking, all to help their units cope with the game’s ever changing
obstacles and environment.

23.3	 	World	Layout

In the Supreme Commander 2 engine, the world is broken up into individual sectors con-
taining grid squares, where each grid square is 1 × 1 meter and each sector holds 10 × 10
grid squares. There are also portal windows, where each portal window crosses a sector
boundary. Figure 23.1 shows an example.

In Figure 23.1, sectors are connected through pathable portal windows. Portal windows
begin and end at walls on either side of sector boundaries. There is one portal for each
window side, and each portal center is a node in an N-way graph with edges that connect
to pathable, same sector portals.

23.4	 	The	Three	Field	Types

For each 10 × 10 m grid sector there are three different 10 × 10 m 2D arrays, or fields of
data, used by this algorithm. These three field types are cost fields, integration fields, and
flow fields. Cost fields store predetermined “path cost” values for each grid square and are
used as input when building an integration field. Integration fields store integrated “cost to
goal” values per grid location and are used as input when building a flow field. Finally, flow
fields contain path goal directions. The following sections go over each field in more detail.

23.4.1	 	Cost	Field
A cost field is an 8-bit field containing cost values in the range 0–255, where 255 is a special
case that is used to represent walls, and 1-254 represent the path cost of traversing that
grid location. Varying costs can be used to represent slopes or difficult to move through
areas, such as swamps. Cost fields have at least a cost of one for each grid location; if there
is extra cost associated with that location, then it’s added to one.

If a 10 × 10 m sector is clear of all cost, then a global static “clear” cost field filled with
ones is referenced instead. In this way, you only spend memory on cost fields that contain

30923. Crowd Pathfinding and Steering Using Flow Field Tiles

unique data. In an RTS game, there are a surprising number of clear sectors. In Supreme
Commander 2, we had roughly 50–70% of the pathable space marked as clear due to wide-
spread areas of open and flat land, lakes, and oceans.

Cost field data was prebuilt by our editor, which converted walls and geometry slope
into cost values. Our design team could also visualize this path cost information, as well
as make changes to it.

23.4.2	 	Integration	Field
The integration field is a 24-bit field where the first 16 bits is the total integrated cost
amount and the second 8 bits are used for integration flags such as “active wave front” and
“line of sight.” You can optionally spend more memory for better flow results by using a
32-bit float for your integrated cost making it a 40-bit field.

23.4.3	 	Flow	Field
Flow fields are 8-bit fields with the first four bits used as an index into a direction lookup
table and the second four bits as flags, such as “pathable” and “has line of sight.” The flow
field holds all the primary directions and flags used by the agent’s steering pipeline for
steering around hills and walls to flow toward the path goal.

Figure	23.1

An	example	of	the	terrain	representation	used	in	Supreme Commander 2.	Each	sector	 is	
10	x	10	grid	squares	with	portals	connecting	sectors.

310 Part III. Movement and Pathfinding

23.5	 	Path	Requests

Once you have a valid goal position and one or more source positions, you can create a path
request. The path request will first run A* through the portal node graph. The A* walker
starts at the source position, travels through portal nodes, and ends at the goal, thus produc-
ing a linked list of “next” portal nodes. This process continues with the next path request
source, but this time the portal walker runs “merging” A*, in which the walker prefers to
stop and point to a previously traveled portal node to “merge” with previous A* results. With
“merging” A* you are more likely to share flow field results and sources are more likely to
path closer together, which is the desired behavior when selecting multiple sources to move
toward a single goal.

If your A* path to goal is successful, the next step is to walk through your list of next
portal nodes and submit a flow field request for each one. At this point you’re done with
the path request and, because you’ve only traversed the portal node graph using merging
A*, you’ve used very little CPU.

23.6	 	The	Integrator

We define the integrator as the class responsible for taking a single flow field request and,
over one or more ticks, building out a single flow field tile. This is achieved by taking the
request’s cost field data as well as the request’s “initial wave front” as input. The initial
wave front is a list of goal locations, each having a predetermined integrated cost value.

The integrator takes the initial wave front and integrates it outward using an Eikonal
equation [Ki Jeong 08]. Visualize the effect of touching still water, creating a rippling wave
moving across the water surface. The Integrator’s active wave front behaves similarly in
how it moves across the pathable surface while setting larger and larger integrated cost
values into the integration field. It repeats this process until the active wave front stops
moving by hitting a wall or the sector’s boarders. To better understand the integration
process, let’s go over the Integrator’s integration steps.

23.6.1	 	Integration	Step	1:	Reset	the	Integration	Field
The integrator’s first step is to reset its integration field values and apply the initial goal
wave front. If the requested flow field has the final 1 × 1 goal, then its initial goal wave front
is a single 1 × 1 location with a zero integrated cost value. However, if the flow field request
is from a 10 × 1 or 1 × 10 portal, then there will be ten goal locations with ten different
integrated cost goals.

For higher quality flow results you can integrate at least one flow field ahead in the
portal path. Then you can carry over the previously integrated costs as your initial portal
window costs instead of using zeros, effectively making the flow across borders seamless.
This quality improvement comes at a cost of making flow tiles order dependent, and thus
harder to reuse by other path requests.

23.6.2	 	Integration	Step	2:	Line	Of	Sight	Pass
If we are integrating from the actual path goal, then we first run a line of sight (LOS) pass.
We do this to have the highest quality flow directions near the path goal. When an agent is
within the LOS it can ignore the Flow field results altogether and just steer toward the exact

31123. Crowd Pathfinding and Steering Using Flow Field Tiles

goal position. Without the LOS pass, you can have diamond-shaped flow directions around
your goal due to the integrator only looking at the four up, down, left, and right neighbors.

It’s possible to improve flows around your goal by looking at all eight neighbors during
the cost integration pass, but we wouldn’t recommend it; marking LOS is cheap and when
within the LOS, you get the highest quality path direction possible by ignoring the flow
field altogether.

To integrate LOS you have the initial goal wave front integrate out as you normally
would, but, instead of comparing the cost field neighbor costs to determine the integrated
cost, just increment the wave front cost by one as you move the wave front while flagging
the location as “Has Line of Sight.” Do this until the wave front hits something with any
cost greater than one.

Once we hit something with a cost greater than one, we need to determine if the loca-
tion is an LOS corner. We do this by looking at the location’s neighbors. If one side has a
cost greater than one while the other side does not, we have an LOS corner.

For all LOS corners we build out a 2D line starting at the grid square’s outer edge posi-
tion, in a direction away from the goal. Follow this line across the grid using Bresenham’s
line algorithm, flagging each grid location as “Wave Front Blocked” and putting the loca-
tion in a second active wave front list to be used later, by the cost integration pass. By
marking each location as “Wave Front Blocked” the LOS integration wave front will stop
along the line that marks the edge of what is visible by the goal.

You can bring LOS corner lines across sector borders by carrying over the “Has Line of
Sight” and “Wave Front Blocked” flags at portal window locations. Then, when you build
out the neighbor’s integration field, for each portal window location that has the “Wave
Front Blocked” flag, consider it an LOS corner to the goal and build out the rest of the line
accordingly. This will make the LOS seamless across sector borders.

Continue moving the LOS pass wave front outward until it stops moving by hitting a
wall or a location that has the “Wave Front Blocked” flag. Other than the time spent using
Bresenham’s line algorithm, the LOS first pass is very cheap because it does not look at
neighboring cost values. The wave front just sets flags and occasionally detects corners and
iterates over a line.

Figure 23.2 shows the results of a LOS pass. Each clear white grid square has been
flagged as “Has Line Of Sight.” Each LOS corner has a line where each grid square that
overlaps that line is flagged as “Wave Front Blocked.”

23.6.3	 	Integration	Step	3:	Cost	Integration	Pass
We are now ready for cost field integration. As with the LOS pass, we start with the active
wave front list. This active wave front comes from the list of “Wave Front Blocked” loca-
tions from the previous LOS pass. In this way we only integrate locations that are not
visible from the goal.

We integrate this wave front out until it stops moving by hitting a wall or a sector
border. At each grid location we compute the integrated cost by adding the cheapest cost
field and integrated cost field’s up, down, left, or right neighbors together. Then repeat this
Eikonal equation process again and again, moving the wave front outward toward each
location’s un-integrated, non-walled neighbors.

During integration, look out for overlapping previously integrated results because of small
cost differences. To fix this costly behavior, make sure your wave front stops when it hits

312 Part III. Movement and Pathfinding

previously integrated results, unless you really have a significant difference in integrated
costs. If you don’t do this, you risk having wave fronts bounce back and forth, eating up results
when it’s not necessary. In other words, if a different path is slightly cheaper to take, then
don’t bother backtracking across the field just to save that small pathfinding cost difference.

The following is an example of when it’s appropriate to overlap previously integrated
cost results. Imagine a single path that splits into two paths, where each split path leads
to the same goal location. However, one split has a long and costly sand trap, while the
other does not. The integration wave front will move away from the goal, split into two,
and converge on each other at the beginning of the path. When they meet, the cheaper
wave front will overlap the more expensive wave front’s results and continue to integrate,
backtracking down the expensive path until the cheaper integrated costs do not have a
significant difference with the previously integrated costs. This backtracking behavior will
have the effect of redirecting the flow field directions away from the sand trap and back
toward the cheaper path. This is no different than backtracking in A*; it’s just good to point
this behavior out as it’s more costly when integrating fields.

23.6.4	 	Integration	Step	4:	Flow	Field	Pass
We are now ready to build a flow field from our newly created integration field. This is
done by iterating over each integrated cost location and either writing out the LOS flag or
comparing all eight NW, N, NE, E, SE, S, SW, W neighbors to determine the “cheapest”
direction we should take for that location.

G

Figure	23.2

The	results	of	an	LOS	pass.

31323. Crowd Pathfinding and Steering Using Flow Field Tiles

Figure 23.3 shows what the final flow field directions look like. Notice that no work was
done for locations that have goal LOS or locations within the clear tile. Once the flow field
is built out we submit it to the flow field cache.

23.7	 	The	Flow	Field	Cache

The flow field cache contains all of our built flow fields, each with their own unique ID
based on the portal window they take you through. In this way, work can be shared across
path requests despite having different goals.

If there is a two-way hallway in your map, the odds are pretty good that multiple paths
will want the same hallway flow field results. A flow field can also be reference tracked so
when there are no more references to it, it can be discarded or put on a timer to be dis-
carded later. You can also prebuild all flow field permutations and store them on disk so
that you only need to build the flow fields that have custom LOS goal information.

23.8	 	Supporting	Dynamic	Environments	and	Queries

The whole point of inventing this technique was to better handle the dynamic nature
of our game environments in real-time. To that end, we built everything with dynamic
change in mind.

We can easily support moving sources by running another “merging” A* across portal
nodes if the agent’s position moves outside the sectors in the planned path.

G

Clear Tile

Figure	23.3

The	final	flow	field	directions.

314 Part III. Movement and Pathfinding

We support moving goals by rebuilding the goal’s flow field. If the goal crossed a sector
boundary, the path’s portal nodes are rebuilt behind the scenes. Most of the flow fields
requested by the new path will already have been built and will be in the cache, so very few
flow fields need to be rebuilt. Once the new path is ready, the agent will seamlessly switch
over to it from the old path.

We support changing walls and hills by marking the cost field of the sector that con-
tains them and their associated portals as dirty. Then the portal graph is rebuilt for nodes
that are on the borders of the dirty sectors as well as their neighbors. Finally, the paths that
were affected by those changes are rebuilt.

All of this is done by marking things dirty and rebuilding them based on a priority
queue, where each item in the queue is given a time slice of a fixed number of milliseconds.
This allows us to control what, when, and how rebuilding happens over time.

23.9	 	Cost	Stamp	Support

Cost stamps represent a custom set of costs values you can “stamp” into the world.
In Supreme Commander 2, we needed to place buildings down that had custom walls
as well as custom pathable areas. The player can essentially paint whole new pathable
 landscapes by using varying sized structures, including 1 × 1 grid walls.

Cost stamps record the original cost field values before replacing them with a new set of
costs. After placing a cost stamp down, the overlapping sectors would be flagged as dirty
and the dynamic graph and path rebuilding process would take care of everything else.

23.10	 	Source	Cost	Data

The map editor would build the cost field data from looking at geometry, placing down
walls and hills where appropriate. We would run a blur pass to add a cost gradient near
walls to improve flow results when going down hallways and around jagged edges.

All cost data was also shown in the editor so that designers could manually add and
remove path cost as they saw fit. This was a huge benefit to the design team as they could
finally control where and how units moved in their maps.

23.11	 	Different	Movement	Types

Each agent in the Supreme Commander 2 engine has its own movement type. Each
movement type has its own cost field data and hence produces its own portal graph.
In this way, a land-only tank would have a different path than a hovercraft that can
travel over lakes and swamps.

The editor would build out the different cost data for each movement type. To support
large units, a special wall cushioning process was run over the map that moved the walls
outward. This had the effect of closing off skinny gaps that are too small for large units
as well as pushing out wall and mountain sides so large units can’t visually overlap them
when near.

If the user selected units with different movement types, such as a squadron of jets,
a few land-only tanks, some hovercraft, and a super large experimental robot, the game

31523. Crowd Pathfinding and Steering Using Flow Field Tiles

would use the “most restrictive movement type” path for all compatible units before
 building more paths for the incompatible units.

23.12	 	Steering	with	Flow	Fields

When agents steer with flow fields, there are some if-else conditions to look out for. For
starters, if the agent doesn’t have a valid flow field, it should steer to the next portal posi-
tion. Once the agent has a flow field, it should look for an LOS flag to steer to its goal;
otherwise, it should use the specified flow field direction.

When an agent is receiving new flow field directions, we recommend storing off a path
direction vector and blending in new flow directions as you cross grid squares. This has
the effect of smoothing out the flow field directions as the agent traverses the field.

23.13	 	Walls	and	Physics

With flow fields, your pathfinding agents can move in any direction without the high
expense of rebuilding their path. Once your agents move in any direction, they are bound
to hit a wall or another agent. In the Supreme Commander 2 engine, agents could push
each other around as well as slide along walls using physics.

Having physics in our game allowed for new game play scenarios such as explosions
that push back units or super large robots that could push back a hundred tanks. We
had a structure that could arbitrarily push or pull units across the map, as well as a large
unit that could suck units into a whirlwind, spinning them around and around until they
smashed together. These new game play scenarios would not have been possible without
the cheaper movement cost associated with using flow field tiles.

23.14	 	Island	Fields

An optional island field type can be implemented containing island IDs, where each island
ID represents a single pathable island. Imagine the different islands of Hawaii: if you are
on one island, you can only drive to locations within the same island.

For each sector you store its island ID. If there is more than one island ID in the sector,
then the sector has an island field breaking the IDs down to individual grid locations.
With this information you can quickly determine if a path request is valid.

In the Supreme Commander 2 engine, you can move your mouse over any location on
the map and see the mouse icon change from an arrow to a stop sign, indicating that you
cannot reach that location. This feature was implemented by retrieving Island IDs at the
source and destination locations to see if they match.

23.15	 	Minimizing	CPU	Footprint

You can enforce low CPU usage by capping the number of tiles or grid squares you com-
mit to per tick. You can also easily spread out integration work across threads because the
Integration Field memory is separate from everything else.

316 Part III. Movement and Pathfinding

23.16	 	Future	Work

The following is a list of ideas to further improve this technique.

 • Support 3D spaces by connecting portal graph nodes across overlapping sectors.
 • Pre-process and compress all flow field permutations and stream them from disk.
 • Add support for arbitrarily sized maps by using a hierarchy of sectors and

N-way graphs.
 • Build out the flow field using the GPU instead of the CPU [Ki Jeong 07].
 • Support multiple goals. Multiple goal flow fields are perfect for zombies chasing heroes.

23.17	 	Conclusion

Our work on Supreme Commander 2 shows that it’s advantageous to move beyond single
path-based solutions and start looking at field-based solutions to support dynamic crowd
pathing and steering in RTS games with hundreds to thousands of agents. In this article,
we demonstrated how to represent and analyze the pathable terrain to generate flow fields
that can drive hundreds of units to a goal. Additionally, we showed that this method is
computationally cheap, compared with individual unit pathfinding requests, even in the
face of dynamic terrain and queries. Hopefully you can benefit from our experience with
the Supreme Commander 2 engine and continue to expand and refine field-based path-
finding in your next game.

References

[Ki Jeong 07] W. Ki Jeong and R. Whitaker. “A fast Eikonal equation solver for parallel
 systems.” SIAM Conference on Computational Science and Engineering, 2007.

[Ki Jeong 08] W. Ki Jeong and R. Whitaker. “A fast iterative method for Eikonal equations.”
SIAM Journal on Scientific Computing 30(5), 2008.

