
289

Techniques for Formation
Movement Using Steering Circles
Stephen Bjore

21

21.1 � Introduction

Moving formations around open terrain is fairly easy. However, it becomes more dif-
ficult to generate a path such that the formation ends at a specific point in a specified
orientation, given the limitation that formations can only turn so quickly. A solution to
this problem is presented in this chapter, and is an extension of the idea of using steer-
ing circles from Chris Jurney’s GDC presentation [Jurney et al. 07]. The solution can be
broken into two parts:

	 1.	 Generate the path to follow.
	 2.	 Navigate the formation along the path.

It’s worth noting here that the first part of generating the path isn’t limited to formations.
It can be used for individual characters, vehicles, or any other moving object for which a
steering circle can be defined. The second part is specific to formations and describes two
different techniques for moving the formation along the path.

21.2 � Generate the Path

Using two steering circles, one based on the current position of the formation and one
based on the target position, we can calculate the path the formation needs to take.

21.1	 Introduction
21.2	 Generate the Path
21.3	 Navigate the Formation

21.4	 The Demo
21.5	 Conclusion

290 Part III.  Movement and Pathfinding

Figure 21.1 shows the most important information, as well as an example of what our final
path could look like.

When we first begin generating the path, we start with five pieces of information: the
current position of the formation (formation.pos), the current orientation (formation.dir),
the target position (target.pos), the target orientation (target.dir), and the radius of the
steering circles (or the turn radius of the formation, r). Based on this data, we need to
calculate four additional values:

•• c1, the center point of the starting steering circle.
•• c1_exit, the point where the formation will break away from the starting circle.
•• c2, the center point of the ending steering circle.
•• c2_enter, the point where the formation will join the ending circle.

21.2.1 � Calculating c1 and c2
The first step towards calculating the path is to generate the steering circles that will be used at
the start and end points. To do this, we need to calculate the vector target.pos–formation.pos,
which we will refer to as dirVec.

Next, we will calculate the center point of starting circle, c1. For this, we need the per-
pendicular vector of formation.dir in the same direction as dirVec. We can calculate this
by taking the dot product of both perpendiculars of formation.dir with dirVec. We will use
the perpendicular with the positive result, labeling it formation.perp. Scale formation.perp
to have length equal to r, and then add it to formation.pos to get c1. The center point for

r

r

c1

formation.pos

c1_exit

formation.dir

c2_enter

c2

target.pos

target.dir

Figure 21.1

The final path starts at formation.pos, facing formation.dir, and ends at target.pos, facing
target.dir. c1 and c2 show the centers of the steering circles. c1_exit is where the path breaks
away from the starting circle and c2_enter is where the path joins the ending steering circle.

29121.  Techniques for Formation Movement Using Steering Circles

the ending circle, c2, is calculated in the same way, using –dirVec (instead of dirVec) and
the perpendicular vectors of target.dir. The vector with the positive dot product will be
referred to as target.perp.

The only exception is when the distance between c1 and c2 is less than 2r (i.e., the steer-
ing circles are overlapping). The solution in this case is to invert both formation.perp and
target.perp. This will cause the formation to steer in the opposite direction, thereby giving
it enough space to turn. For example, if we originally used the right-hand perpendicular
of formation.dir, we will use the left-hand perpendicular instead, essentially flipping the
steering circle to the other side of formation.dir.

21.2.2 � Calculating c1_exit and c2_enter
The goal of this section, finding c1_exit and c2_enter, has two different cases that we need
to consider. In order to determine which case we have, we first need to look at whether
position.perp and target.perp are the left or right perpendiculars of position.dir and
target.dir. For brevity, we will say formation.perp is equal to “Left” if it is the left-hand
perpendicular of formation.dir; otherwise it is “Right.” Likewise, target.perp is equal to
“Left” if it is the left-hand perpendicular of target.dir; otherwise it is “Right.”

The first case is for when formation.perp and target.perp fall on opposite sides (e.g.,
formation.perp equals Right and target.perp equals Left). In this instance, our goal is to
calculate the angles where the points c1_exit and c2_enter are on the circumference of the
two circles, relative to the x-axis (these angles are a3 and b3 in Figure 21.2). Once we have
those angles, we can then calculate the two points.

The second case is when formation.perp and target.perp are on the same side. This case
doesn’t require us to calculate any angles, but instead relies on the observation that the
important angles involved are all 90 degrees.

21.2.2.1 � Calculation if Formation.Perp and Target.Perp Are on Opposite Sides

In the case where formation.perp is not on the same side as target.perp, our goal is to
calculate the angles a3 and b3. We will get into the details momentarily, but it should be
noted that the calculation for a3 and b3 will change slightly, depending on which sides
formation.perp and target.perp are on, which is why there are two diagrams in Figure 21.2.

Before we start the calculations, we will make several observations. First, the line from
c1 to c1_exit and the line from c2 to c2_enter are both perpendicular to the line between
c1_exit and c2_enter. Second, the lines c1 to c2 and c1_exit to c2_enter intersect each other
at the midpoint of both lines. Third, we know the radius of the steering circles, r. And
fourth, we are able to calculate the distance between c1 and c2, which is labeled d. Looking
at Figure 21.2, we can see that we now have two right-hand triangles, and that we know
two sides of the triangles (one side is r, the other is ½*d). This means that we can calculate
the angle a1: a1 = acos(r/(1/2 * d)). We can also calculate a2 by finding the angle of
the vector c2-c1 relative to the x-axis.

For a3, the calculation we need to use will depend on the values of formation.perp and
target.perp. If formation.perp is Right, then we can refer to Diagram A, and a3 is calcu-
lated by adding a1 to a2. Else, if formation.perp is Left, we refer to Diagram B, and a3 can
be calculated by subtracting a1 from a2.

The calculation for c2_enter is very similar to the calculation for c1_exit. The angle b1 is
calculated using the exact same equation and values that we used to find a1. The angle b2

292 Part III.  Movement and Pathfinding

is the angle of the vector c1-c2 relative to the x-axis (unlike a2, which is the angle of c2-c1
relative to the x-axis). The calculation for b3 is also the same as the one we used for a3,
and is simply b2-b1 or b2+b1, depending on the values of formation.perp and target.perp.

Finally, now that we’ve calculated a3 and b3, we can generate the points on the circles,
c1_exit and c2_enter:

•• c1_exit(x,y) = (c1.x + r * cos(a3), c1.y + r * sin(a3))
•• c2_enter(x,y) = (c2.x + r * sin(b3), c2.y + r * sin(b3))

formation.perp

a1
a2

a3

b3

b1
b2

c1_exit

formation.dir

target.dir

c1

c2

[A] formation.perp = “Right”

r d

target.perp

d

target.perp = “Left”

c2_enter

b3b1

b2

a1
a2

a3

c1_exit
formation.dir

c2_enter

target.dir

c1

c2

[B] formation.perp = “Left”

target.perp

formation.perp

target.perp = “Right”

Figure 21.2

This diagram shows everything necessary to calculate the angles a3 and b3 when forma-
tion.perp and target.perp are on opposite sides. [A] shows the angles to be calculated
when formation.perp is Right and target.perp is Left. [B] shows the angles for when forma-
tion.perp is Left and target.perp is Right.

29321.  Techniques for Formation Movement Using Steering Circles

21.2.2.2 � Calculation if Formation.Perp and Target.Perp Are on the Same Side

In the case where formation.perp and target.perp both fall on the same side (meaning
that they are both Right or Left), the calculation is a bit simpler. Here, we start by cal-
culating the vector c2-c1, which we called d. As seen in Figure 21.3, if formation.perp is
equal to Right, then we will use the left-hand perpendicular of d, labeled d.perp. Similarly,
if formation.perp is equal to Left, then d.perp will be the right-hand perpendicular of d.
In either case, once we have d.perp, add it to c1 and c2 to get c1_exit and c2_enter.

21.2.3 � Generate the Points Along the Path
Finally, we can generate the points along the path for the formation to navigate by. The
points will start at formation.pos, and move around the circle c1 to c1_exit, move on to
c2_enter, and finally around the circle c2 until we arrive at target.pos.

The direction of travel around the circles is determined by formation.perp and target.perp.
When they are equal to “Right,” then we will generate points on the corresponding circle
going around in the clockwise direction, and when they are “Left,” we will generate points
going around in the counter-clockwise direction.

21.3 � Navigate the Formation

Moving a formation around in a way that looks reasonable requires the positions within
the formation to be fluid. The following examples will keep the first row of the formation
static, and the rows behind will follow in a couple of different ways. Here, we will look at
two styles: the first style involves moving each unit within the formation towards the unit
ahead of it, and the second style requires each unit to preserve its row by staying next to
the units to its left and right.

Note that the points within the formation described here are intended to be pathfind-
ing targets, not necessarily the actual locations of the units within the formation. This
flexibility could allow units to go off and do other things, such as dealing with attacking

d.perp

c1_exit

formation.dir

c2_enter

target.dir

formation.perp

target.perp

d

Figure 21.3

This shows what needs to be calculated when formation.perp and target.perp fall on the
same side; in this case, they are both “Right.”

294 Part III.  Movement and Pathfinding

enemies, gathering nearby resources, or navigate around smaller obstacles. Once the unit
has completed whatever subtask it had, it can then resume pathfinding to its target posi-
tion within the formation.

21.3.1 � “Column” Formation
This technique involves moving each unit within the formation towards the unit in front
of it, while maintaining a set distance. While this will result in a fairly fluid look, and
maintain a connection between each unit in a column, it does not preserve the rows.

The first step is to update the position and direction of the formation, based on the
velocity of the formation and the next point in the path. To keep the units of the first row in
a straight line, their positions are calculated such that the line they form is perpendicular
to the formation’s updated direction, and is centered at the formation’s position. Starting
on the second row, calculate the direction between each target, and the target ahead of it
in the same column. We then move the target in that direction until it’s touching the unit
ahead of it, repeating this process for the units in all of remaining rows in the formation.

21.3.2 � “Band” Formation
For this movement style, the formation preserves the rows as it steers around corners. The
first row is calculated in the same manner that was used for the Column Formation style.

Next, we need to determine whether the second row is turning left or right, based on
the direction that the first row moved in. To do this, first calculate the direction from any
unit in the second row to the unit in the same column of the first row, and then take the
right-hand perpendicular, which we will call rPerpendicular. Next, take the dot product of
the direction that the first row moved in with rPerpendicular. If that result is positive, the
second row will be turning right, or else it will be turning left.

For the moment, let’s assume that the second row is turning left. The next step will be to
move the leftmost unit in the second row towards the unit ahead of it in the same column
until they are touching. Next, starting with the second unit in the row, set each unit’s posi-
tion to be touching the unit to its left, moving in the direction of rPerpendicular.

If the row is turning right, there are only two minor differences. The main one is that
we will want to calculate the position of the rightmost unit first, moving it towards the
unit in front of it until they are touching. The other difference is that you will start with
the second unit from the right, and will set each unit’s position to be touching the unit to
its right, moving in the direction of -1*rPerpendicular.

In either case, once we have the positions for all of the units in the second row, we can
repeat this process for the remaining rows in the formation.

21.4 � The Demo

A demo provided on the book’s website (http://www.gameaipro.com) was created to
be used as a proof-of-concept for the ideas presented in this paper. It was written in
HTML5 and Javascript, with the intention of being as portable as possible. Nearly all
of the logic for generating the path can be found within “main.js,” while the logic for
drawing, updating, and moving the formation and the units within the formation can be
found in “formation.js.”

29521.  Techniques for Formation Movement Using Steering Circles

21.5 � Conclusion

This article has shown that steering a formation to end in a specific place and direction,
with the use of some simple linear algebra, is not difficult. By calculating two steering
circles based on the formation’s current position and the destination position, it’s possible
to generate a path for the formation to follow that will ensure that the formation will never
need to make turns sharper than it is capable of.

Further development of this concept could include the ability for the formation to take
obstacles into account, on both a large and small scale. For smaller obstacles, the inten-
tion is that the formation can largely ignore them. This is because it is intended that the
pathfinding targets within the formation will deal with finding a way around anything
small. Large-scale obstacles would need to be dealt with separately, but could potentially
be handled by taking into account the size of the entire formation, and then perform
pathfinding for the formation as a whole.

References

[Jurney et al. 07] C. Jurney and S. Hubick. “Dealing with destruction: AI from the
trenches of company of heroes.” Game Developers Conference, 2007. Available
online (https://store.cmpgame.com/product.php?cat=24&id=2089).

