
259

Creating High-Order Navigation 
Meshes through Iterative 
Wavefront Edge Expansions
D. Hunter Hale and G. Michael Youngblood

19

19.1 � Introduction

When placing AI-driven characters into your immersive game world, one large problem 
needs to be addressed, and that is the issue of a meaningful representation of the environ
ment. The only source for information about the layout of the environment available to 
these characters is that which is provided to them by the game designers usually in the 
form of the geometric models that are assembled spatially to create the world. In all but the 
simplest of games, the level of detail in those model files is often too complex, too detailed, 
and organized more for display than spatial reasoning. Instead, some form of spatial 
abstraction is needed to group similar areas in single regions of space for the character 
to consider.

Historically, this representation was generally presented in the form of a waypoint map 
(i.e., valid points of known open points in a space with a collection of known good routes 
between them). Searching such a structure allowed AI characters to make paths through tra-
versable space that appeared reasonable [Tozour 04]. The usage of waypoint graphs has been 
in decline as the navigation mesh spatial representation has risen in usage [McAnils 08]. 
A navigation mesh (often referred to as a navmesh) is composed of a listing of regions, which 

19.1	 Introduction
19.2	 Wavefront Spatial 

Decomposition
19.3	 Postdecomposition

19.4	 Wavefront Runtime
19.5	 Comparisons to 

Existing Techniques
19.6	 Conclusion



260 Part III.  Movement and Pathfinding

are well-defined convex groupings of traversable space (usually defined by polygons or poly-
hedrons) and an additional listing describing connectivity (as a topological graph). This 
collection of regions organized as a graph can be rapidly searched to generate a path and 
characters can walk from region to region knowing they will remain in traversable areas.

Traditionally, navigation meshes have been created either by hand or using some form 
of automated spatial decomposition algorithm that examines the obstructions present in 
the environment and then breaks down the area between them into as few regions as pos-
sible. Reducing the number of regions present in a world yields a smaller search space and 
is generally considered to be highly important to a spatial decomposition. Unfortunately, 
creating a decomposition for a game environment with an optimal (absolute minimum) 
number of regions is NP-Hard [Lingas 82]. This means that there is no best technique. 
Instead there are many techniques that attempt to approach the optimal one. These 
approaches generally start with some form of triangulation of the environment [Delaunay 
34] and then attempt to minimize the number of regions present in the environment 
through combining these triangles [Hertel 83].

The problem with this approach is that the triangles that remain in the navigation mesh 
cause problems for character navigation in areas where many triangles come together at a 
single point. It is all but impossible for a character to say which region they are standing 
in at the confluence points. These confluence points unfortunately show up all too often in 
complex environments. This leads to localization and pathfinding issues (i.e., if the char-
acter does not know where it is, then how can it find a path to its destination) [Hale 11].

The alternative to the triangular decomposition approaches, and one that will help 
minimize the character localization problem, is a growth-based approach. In our previ-
ous work we have presented 2D (PASFV) and 3D (VASFV) growth-based spatial decom-
position algorithms [Hale 08, Hale 09], which were inspired by the Space-Filling Volumes 
algorithm [Tozour 04]. While these approaches do generate quality navigation meshes 
they can be slow when executed on large environments (the runtime of the algorithm 
increases based on the area to be decomposed). This is due to the fact these algorithms 
perform many unnecessary collision tests since they have to verify that every growing 
region has not intruded into another region or obstruction on every growth step. The vast 
majority of the time this is not the case, and this test will return a negative result. This 
unnecessary testing is a consequence of the sequential iterative expansion in traditional 
growth-based algorithms.

We have developed the Iterative Wavefront Edge Expansion Cell Decomposition 
(referred to as Wavefront for brevity) algorithm to address the problems of previous tech-
niques by reducing collision tests and iterative growth. This algorithm works by scanning 
the world geometry visible from each region we place in the world and determines where 
possible collisions might occur (i.e., interesting places to expand toward). By forcing our 
regions to expand directly to these locations, we eliminate all but a handful of collision 
tests. This alters the runtime of the growth-based algorithm such that it increases with 
the complexity of the world (number of obstructions) instead of the area of the world. 
Not only is this technique faster than existing growth-based techniques, but the resulting 
navigation meshes produced using the Wavefront algorithm retain the high mesh quality 
exhibited by the PASFV and VASFV algorithms by providing regions of higher-order 
polygonal/polyhedron geometry [Hale 11].



26119.  Creating High-Order Navigation Meshes through Iterative Wavefront Edge Expansions

19.2 � Wavefront Spatial Decomposition

The Wavefront Edge Expansion Cell Decomposition (Wavefront) algorithm is derived 
from the PASFV and VASFV algorithms [Hale 08, Hale 09] and shares several implemen-
tation steps with them. The algorithm generates decompositions via a four-step process. 
First, unit-sized potential regions (seeds) are placed into the world. Next, one of these 
regions is selected at random and obstructions present in the world are analyzed from this 
region’s perspective. In the third step of the algorithm the selected region enters a phase of 
accelerated expansion. This expansion is towards the obstructions found by the analysis 
in the second step of the algorithm. Steps two and three of the algorithm repeat for each 
region; this expands each region to their maximum possible size. Finally, in the fourth 
step of the algorithm new seeds are placed into any traversable space (a.k.a., empty space, 
unconfigured space, negative space) adjacent to the regions just created and the algorithm 
returns to step two, allowing these new regions to expand. If no new seeds are placed the 
algorithm terminates.

19.2.1 � Initial Seeding
Traditionally, growth-based algorithms start using a grid-based pattern to place the initial 
unit-sized regions into the world. These approaches then iteratively give every region the 
chance to grow and expand outward in the direction of the normal of each edge (or face 
in 3D—we will use edge for simplicity here since they are both effectively boundaries for 
occupied space) of that region.

When using the Wavefront algorithm on our initial entry into the seeding phase we 
generate a list of potential seed points using a seeding algorithm that places a potential 
seed next to every exposed obstruction edge. This results in better overall coverage of the 
environment with fewer unit-sized quad (or cube in 3D) regions placed into the world 
over simple grid seeding [Hale 11]. Then one of these seed points is randomly selected to 
use as our initial region. The other potential seed points will be retained for later seeding 
passes, but will only be used if they are still in areas of traversable space that are as yet 
unclaimed by any regions. If on later passes through the seeding phase this list is empty, 
we will attempt to refill it by looking for areas of unclaimed traversable space adjacent to 
the regions we have placed. If this list remains empty after that point then the Wavefront 
algorithm will terminate.

19.2.2 � Edge Classification
After a seed region has been generated, we proceed to the edge classification step of the 
Wavefront algorithm. These next two steps are the most computationally intensive steps of 
this algorithm, and we only wish to perform them on valid regions that we know are going 
to expand. Therefore, we only expand one region at a time and discard region seeds that 
are covered by earlier expansion. During this step, we iterate through each of the edges 
of obstructions present in the world as well as any edges present in regions that we have 
already placed into the environment. We then discard any edges whose normal faces away 
from the target seed point of the region as these edges are back facing and they cannot 
interact with the region. We then sort these edges into categories based on their relative 
spatial position when compared to the target seed location (+x, −x, +y, −y, +z, −z). Note 
that this technique creates axis-aligned edges between decomposed regions (obviously 



262 Part III.  Movement and Pathfinding

not guaranteed between regions to obstructions), which makes it easier for AI characters 
to reason and traverse regions. Edges that span multiple categories are placed in the first 
applicable one, depending on the evaluation order used in the implementation of the algo-
rithm. Our reference implementation uses the following ordering +y, -y, +x,-x, +z, and -z. 
Any ordering will work as long as it is consistently followed.

Once the edges have been sorted, we locate all potential event points. Our region will 
have an edge that is perpendicular to each of the sorting classifications and whose normal 
matches the sorting classification (we will refer to this as the classification edge). By compar-
ing the slope of each of our sorted obstruction edges to the appropriate classification edge, 
we can determine in advance how the expanding region would interact with the obstruc-
tion. This can be visualized by thinking of a radial half-plane sweep drawn from the initial 
seed point and then rotated in 90 degree arcs along each edge as shown in Figures 19.1 
and 19.2. This sweep line will report the orientation of the edges it finds as well as the closest 
point on the edge to the initial seed point. The interactions between these edges of occupied 
space and the edge of the region we just placed can be reduced down to a series of cases.

Figure 19.1

Two simple cases for event-based spatial decompositions: the case on the left shows 
expansion towards a parallel element and the case on the right shows the discovery of an 
intruding vertex.

Collision Edge

Region Edge

Region Edge
growing

Event

Figure 19.2

Two complex cases for the Wavefront decomposition involving splitting events.



26319.  Creating High-Order Navigation Meshes through Iterative Wavefront Edge Expansions

The first of these cases occurs if the tested edge is found to be parallel to the classifica-
tion edge as shown on the left side of Figure 19.1. In this case, we will wish to move the 
classification edge such that it is adjacent and co-planar to the target edge. We accomplish 
this by calculating the closest point on the edge to the initial seed point of the region we 
are evaluating. We then log this point and the distance from it to the region’s initial seed 
point as an event. Incidentally, since all of our placed regions only expose axis-aligned 
edges and our expanding regions also only expose axis-aligned edges, any events involv-
ing other regions of traversable space will fall into this category.

A slightly more complicated case occurs when the edge is examined and found to 
be sloping inward towards the classification edge (i.e., region edge under evaluation) as 
shown in the right side of Figure 19.1. In this case, we will only be able to expand such that 
the closest vertex of that edge lies on the classification edge without changing the slope 
of the classification edge. We cannot change this slope as this would result in previously 
claimed areas of traversable space being relinquished, which would violate one of our 
invariants (claimed region space must always remain claimed by that region). This case 
is also resolved by storing the location of the closest vertex on the edge under evaluation 
along with the distance to that vertex from the initial seed point of the region.

Finally, we come to the most complicated case, which might result in the potential 
addition of new edges to the expanding region. In this case, as shown on the left side of 
Figure 19.2, the closest obstruction edge is sloping away from the midpoint of the classi-
fication edge, and it would be possible to move the classification edge such that one of its 
vertices could intersect the edge under consideration. This is an edge splitting case, and 
in order to calculate where this split should occur, the closest point on the edge under 
evaluation to the initial seed point of the region is found. This point is then stored as 
an event point along with the distance between this point and initial seed point of the 
region. Additionally, we wish to store the two end points of the edge under consideration 
(assuming the closest point was not an end point) so that we will be able to increase the 
order (order indicates the relative number of sides of a polygon/polyhedron, so a triangle 
has order three, an octagon order eight, and so forth) of this region such that it adds a new 
edge that is adjacent to the entire length of the edge under consideration. However, instead 
of calculating the distance between each of these end points and the initial seed point, we 
will treat them as a special case that looks at them as if they are only slightly further away 
from the initial point than the point we are using to split. This will prevent those points 
from interfering with other calculations in the process.

A more complex case with multiple splitting events can be seen on the right side of 
Figure 19.2. The events should be processed in order based on the distance from the initial 
seed point of the expanding region, and by altering the distance of these two end points 
we will ensure that the region tries to fully encompass all of the space that is adjacent to 
the edge it splits on as that point is processed.

At this point we have a collection of potential events for our new region to expand 
towards; however, we need to do two things before we can begin the expansion. First, if the 
edges of the world are defined as some boundary conditions rather than nontraversable 
space, events will need to be inserted to allow each region to expand outward to the edges 
of the world. Then this list will need to be sorted based on the distance between each event 
and the initial seed point of the region. This results in the processing of closer events first 



264 Part III.  Movement and Pathfinding

as we are more likely to reach them as further events are oftentimes unreachable due to the 
presence of more immediate obstructions.

19.2.3 � Edge Expansion
With the completed event list for this region we are able to proceed to the expansion phase 
of the Wavefront algorithm. First, the expansion rates of all of the edges of the region are 
reset to zero. Then, the first (closest) unprocessed expansion event is selected and removed 
from the list of potential events. The distances that the edges of the region would have to 
move such that they reach this expansion event are then calculated. This is done by cal-
culating the distance between the current location of the two (three in 3D) closest edges 
and the target expansion location. This result is then broken down into its principal com-
ponents (x, y, z) and if these values are positive they are set as expansion rates for the 
edge or edges that have a normal that points toward the target event. The use of rates is 
a legacy from stepwise growth, but here the rates indicate jumps directly to event points. 
Expansion should then occur with each edge iteratively moving outward. Once all the 
edges have moved, then the check for any collisions or invalid expansion conditions can 
be executed. This happens because there are splitting events that may result in invalid con-
figurations if only half of the event (i.e., one rather than two edges are allowed to expand) 
is executed.

Once the region has finished expanding, any collisions with other regions or obstruc-
tions must be resolved. Any vertices of the expanded region that collided with an obstruc-
tion must be split, and the region must be converted to a higher-order polygon/polyhedron 
by inserting a new edge. To construct this new edge take the opposite normal of the 
obstruction edge and constrain this new edge to the extents of the obstruction edge. Since 
expansion events are calculated in isolation with no consideration for other regions or 
potential obstructions, it is possible that a collision will occur and that the region will have 
to contract from a potential expansion event. If this happens, then the edge involved in the 
collision should cease further attempts to expand. The algorithm will then select another 
expansion event, repeating this process until there are no more events or all of its edges 
have ceased attempting to expand due to collisions.

19.2.4 � Reseeding
After all regions have finished expanding, additional regions will be placed as per the 
seeding process discussion earlier. If the algorithm enters the seeding phase, and is unable 
to place any new regions, it terminates. This results in a collection of regions that is ready 
to serve as a navigation mesh. Additionally, if desired, this collection of regions can be 
cleaned up by combining adjacent regions such that the result would still be convex.

19.3 � Postdecomposition

Existing growth-based spatial decomposition algorithms (e.g., PASFV, VASFV, and SFV) 
took advantage of a postprocessing step to improve the quality of the resulting navigation 
mesh. Occasionally, two or more region seeds will grow into an area of the environment 
that could be filled by a single convex region. This is a natural consequence of placing 
and growing multiple seeds at the same time, and is generally corrected by combining 
the regions. However, this combining takes time and effort, and it would be nice if it was 



26519.  Creating High-Order Navigation Meshes through Iterative Wavefront Edge Expansions

not required. A strength of the Wavefront algorithm is that it avoids most of this form 
of cleanup due to the fact it only grows one region at a time. Since two regions are never 
growing at the same time, they cannot both attempt to subdivide the same convex area of 
traversable space, thus yielding a cleaner decomposition.

19.4 � Wavefront Runtime

The Wavefront algorithm enjoys a worst case runtime, bounded by the complexity of the 
environment it is executed on of O(n*m). In this case n is the number of obstructions pres-
ent in the world, each of which will have to be evaluated by m regions that will be seeded 
by the algorithm. This runtime might seem to be worse than existing growth-based spatial 
decomposition algorithms (they generally increase fractionally, O(n1/x) where n is the 
number of square units in the world, and x is the number of regions), but remember that 
the runtimes of these increase based on the size of the world (due to the additional growth 
steps that have to be performed to fill the world).

The runtime of the Wavefront algorithm only increases with the actual complexity 
of the environment and not due to the introduction of additional unoccupied space. In 
general, across a variety of game environments of different sizes and complexities, our 
reference implementations of these two algorithms average runtimes in the milliseconds 
to seconds range for Wavefront in comparison to a range of seconds to minutes for our 
growth-based implementations. The memory footprint of the Wavefront algorithm grows 
linearly as each newly generated region only needs to interact and know about existing 
regions and obstructions at any given point in time.

19.5 � Comparisons to Existing Techniques

The Wavefront algorithm has been compared to existing methods of generating spatial 
decompositions with particular focus on those currently in use in industry, namely 
Delaunay Triangulation, Hertel–Melhlorn Decompositions, and Trapezoidal Cellular 
Decompositions. We only targeted algorithms for comparison that also generate full cov-
erage decompositions in order to ensure the comparisons were valid. Evaluations were 
conducted on 25 procedurally generated worlds composed of randomly generated and 
placed obstructions with no axis-aligned restrictions and a basic set of rules that generated 
test worlds similar in geometry to those found in many games (the generation rules were 
influenced from public Quake 3 levels, which were used in initial testing).

We generated decompositions for the worlds using each algorithm under consider-
ation (one of these levels and the Wavefront Decomposition for it is shown in Figure 19.3). 
We then evaluated the decompositions based on the number of regions present, and the 
quality of the decomposition (using navigation mesh evaluation metrics [Hale 11] to 
determine the number and shape of any degenerate or low quality regions). We found 
that the decompositions generated with the Wavefront algorithm contained both fewer 
total regions and fewer near-degenerate regions than the Trapezoidal Decompositions or 
Delaunay Triangulation Decompositions. We define a near-degenerate region to be one 
that an AI character would have difficulty moving into or out of. Such regions are char-
acterized as oddly or bizarrely shaped areas (e.g., fans of triangles all coming together at 
a single point, long thin slivers of quad-based regions spanning an environment, regions 



266 Part III.  Movement and Pathfinding

with very narrow adjacencies to other regions, or disjoint/poorly connected regions), 
which we are able to test for and detect.

The number of regions was consistent between the Wavefront algorithm and the 
Hertel–Melhlorn decomposition; however, the Wavefront decompositions had fewer 
near-degenerate regions than the Hertel–Melhlorn decompositions [Hale 11]. It is not 
surprising that the Wavefront algorithm has fewer of these near-degenerate regions as it 
possesses a unique property not shared by the other decomposition techniques we tested 
against. Namely, there is an upper limit on the number of regions that come together at 
a single point of traversable space of five (10 in 3D); mathematical proof in [Hale 11]. The 
other commonly used techniques have no upper bound on how many regions can con-
verge at a single point of traversable space. This convergence of many regions onto a single 
point is what often leads to the creation of near-degenerate regions and should be avoided 
if possible.

It is worth noting that the Wavefront algorithm generates decompositions that appear 
to be similar to those generated by the Trapezoidal cell decomposition algorithm. However, 
they are distinct decompositions, due to the fact the Wavefront algorithm will consistently 
produce decompositions with fewer regions. This is due to Trapezoidal Decomposition 
being restricted in only decomposing the world in a single direction (vertical or horizontal) 
while the Wavefront algorithm is in effect a multidirectional decomposition (both vertical 
and horizontal wavefronts originate from the initial region seeds).

For detailed information on the evaluation of the Wavefront technique, quantitative 
numbers, and navmesh quality metrics, please refer to Hale’s A Growth-Based Approach 
to the Automatic Generation of Navigation Meshes [Hale 11].

Figure 19.3

A decomposition produced by the Wavefront algorithm. Obstructions are shown in gray, while the decompo-
sition regions are shown with black outlines.



26719.  Creating High-Order Navigation Meshes through Iterative Wavefront Edge Expansions

19.6 � Conclusion

Overall, the Wavefront algorithm generates fast, high-quality decompositions for use as 
navigation meshes via a quad-based expansion algorithm. Such decompositions have fewer 
small and degenerate regions (generally triangles) that can interfere with character naviga-
tion. This algorithm improves on previous growth-based approaches by performing fewer 
expansion steps, which reduces the number of collision tests that must be performed. This 
yields an algorithm whose runtime scales with the complexity of the world rather than the 
size of the world as existing growth-based approaches do. Additionally, since this algo-
rithm only grows one region at a time, there is less post processing that would normally 
be caused by multiple regions competing to fill the same convex area. The decompositions 
generated by this algorithm compare favorably with those produced by existing popular 
algorithms (e.g., Hertel–Melhlorn or Trapezoidal Cell Decomposition).

References

[Delaunay 34] B. Delaunay. “Sur la sphere vide” Classe des Sciences Mathematiques et Naturelle 
7. 1934.

[Hale 08] D. Hunter Hale, G. Michael Youngblood, and P. Dixit. “Automatically-generated 
convex region decomposition for real-time spatial agent navigation in virtual worlds.” 
Artificial Intelligence and Interactive Digital Entertainment (AIIDE). 2008.

[Hale 09] D. Hunter Hale and G. Michael Youngblood. “Full 3D spatial decomposition 
for the generation of navigation meshes.” Artificial Intelligence and Interactive Digital 
Entertainment (AIIDE). 2009.

[Hale 11] D. Hunter Hale. A Growth-Based Approach to the Automatic Generation of 
Navigation Meshes. Doctoral Dissertation. University of North Carolina at Charlotte, 
December 2011.

[Hertel 83] S. Hertel and K. Mehlhorn. “ Fast triangulation of the plane with respect to simple 
polygons.” International Conference on Foundations of Computation Theory. 1983.

[Lingas 82] A. Lingas. “The power of non-rectilinear holes.” Proceedings 9th International 
Colloquium on Automata, Language, and Programming. 1982.

[McAnils 08] C. McAnils and J. Stewart. “Intrinsic detail in navigation mesh generation.” 
In  AI Game Programming Wisdom 4. Hingham, MA: Charles River Media, 2008, 
pp. 95–112.

[Tozour 04] P. Tozour. “Search space representations.” In AI Game Programming Wisdom 2. 
Hingham, MA: Charles River Media, 2004, pp. 85–102.


