
185

Phenomenal AI Level-of-Detail
Control with the LOD Trader
Ben Sunshine-Hill

14

14.1 � Introduction

Of all the techniques which make modern video game graphics possible, level-of-detail
(LOD) management may very well be the most important, the most groundbreaking,
and the most game-changing. While LOD seems like a rather boring thing to think of
as “groundbreaking,” in order to get the graphical quality we want in the world sizes we
want, it’s crucial to not render everything as though the player was two centimeters away
from it. With conservatively chosen LOD transition distances, immense speedups are pos-
sible without compromising the realism of the scene in any way. Viewed broadly, even
things like visibility culling can be considered part of LOD—after all, the lowest detail
possible for an object is to not render it at all. Graphics programmers rely on LOD. It is, in
a sense, “how graphics works.”

AI programmers use some form of LOD, too, of course, but we don’t really rely on it.
We’ll use lower quality locomotion and collision avoidance systems for characters more
than ten meters away, or simulate out-of-view characters at a lower update rate, or (similar
to visibility culling above) delete characters entirely when they’re too far away. But while
graphics programmers can use LOD without compromising realism, whenever we employ
LOD, in the back of our mind, our conscience whispers, “That’s just a hack … someone’s
going to notice.” We use LOD only when we absolutely must, because we know that it’s
bringing down the quality of our AI.

14.1	 Introduction
14.2	 Defining the Problem
14.3	 Criticality and Probability
14.4	 Modeling Criticality

14.5	 LOD’s and BIR’s
14.6	 The LOD Trader
14.7	 The LOD Trader in Practice
14.8	 Conclusions

186 Part II.  Architecture

There’s another sense in which we don’t rely on AI LOD. In graphics, LOD acts as a
natural limit on scene complexity. The player can only be next to so many objects at once,
and everything that’s not near the player is cheaper to render, so framerate tends to even
out. It’s far from a guarantee, of course, but LOD is the first line of defense for maintaining
the framerate. For AI, however, the techniques we’d really like to use often aren’t feasible
to run on more than a small handful of NPCs at once, and a cluster of them can easily blow
our CPU time budget. There’s no “LOD threshold distance” we could pick which would
respect our budget and give most visible characters the detail we want.

So we use LOD. But it’s not “how AI works.”
What if LOD was smarter? What if it didn’t even use distances, but instead could deter-

mine, with uncanny precision, how “important” each character was? What if it could read
the player’s mind, and tell the game exactly when to start using high-quality collision
avoidance for a character, and when to stop? What if it knew which characters the players
remembered, and which characters they had forgotten? And what if its LOD selections
always respected the CPU time budget when NPCs decided to cluster around the player,
but always made good use of the time available when they didn’t?

Well, then, we could trust LOD. We could use techniques as expensive as we wanted,
because we could rely on LOD to keep them from blowing our budget. We could move
away from the endless task of tuning LOD thresholds, and hardcoding hack after hack to
compensate for the endless special cases where our LOD thresholds weren’t enough. LOD
could become “how AI works.”

That, in a nutshell, is the LOD Trader. It can’t read the player’s mind, but its simple
heuristics are light-years beyond distance thresholds in determining how important a char-
acter is to the player. Rather than relying on fixed transition rules, it treats the entire space
of detail levels—for all the AI features we’d like to control—as a puzzle to be solved each
frame. It attempts to maximize the realism of the game simulation without going over the
computation budget, and does it in a remarkably short period of time (tens of microseconds).

It’s not magical. Its heuristics are far from infallible, and the optimality of its LOD solu-
tions is approximate. But it is worlds beyond distance-based LOD, and the first time it out-
smarts you—its LOD reductions becoming subtle and then invisible—you’ll wonder a bit.

14.2 � Defining the Problem

The first thing to do when attacking a problem like “optimal LOD selection” is to figure
out what we mean by optimal. The graphics guys don’t need to do this, because their LOD
selections can be made perfectly—they can transition far enough away that they’re not
giving up any realism. But every detail reduction we make is going to potentially reduce
realism, so we need to define, in a numeric sense, what we’re trying to maximize, and what
our constraints are. We need to come up with a metric, a system of units for measurement
of realism. Yikes.

Well, let’s grab the bull by the horns. I claim that what we’re trying to do is pick a detail
level for each AI feature, for each character, to minimize the probability that the player will
notice an issue, an unrealistic reduction in detail. This helps nail things down, because we
all know all about probabilities and how to compare and do arithmetic with them. In this
model, Choice A won’t be “a little less realistic” than Choice B, but will rather be “a little
less likely to be noticed.” We’ll refer to the event of the player actually noticing an issue as a

18714.  Phenomenal AI Level-of-Detail Control with the LOD Trader

Break in Realism (BIR). A BIR only occurs when the player notices the issue; just reducing
the detail of an entity isn’t a BIR if she doesn’t notice it as unrealistic.

14.2.1 � Diving Into X-Space
Let’s make things a little cleverer, though. Suppose that the probability of the user notic-
ing that some entity is unrealistic is p. Rather than work with that number directly, we’ll
work with the number x p= − −()log 1 . That’s the negative logarithm (base whatever, let’s
use the traditional e) of the complement of the probability—the probability of getting away
with it, of the user not noticing. A plot of p versus x is shown in Figure 14.1. As p goes
up, x goes up. If p is zero, x is zero; as p approaches 1, x approaches infinity. (The inverse
equation is p e x= − −1 .)

Why this complication? Well, actually, it’s a simplification; x turns out to be much
better-behaved than p. First, if we have two potential sources of unrealistic events, with
(independent) probabilities of being noticed p1 and p2 , and we want to know the total
probability ptot of the user noticing either one, that’s p p p p ptot = + −1 2 1 2 , not especially
nice. For three sources it gets even uglier: p p p p p p p p p p p p ptot = + + − − − +1 2 3 1 2 1 3 2 3 1 2 3.
In contrast, x x x xtot = + +1 2 3 . Second, this transformation gives us a better interpreta-
tion of phrases like “twice as unrealistic.” If some event has probability p1 0 6= . of being
noticed, and some other event is “twice as unrealistic” as p1 , what is its probability? Clearly
it can’t be 1.2—that’s not a valid probability. But in x-space things work out fine: x x2 12= ,
which leads to x1 0 91= . , x2 1 82= . , p2 0 84= . . What is 0.84? It’s the probability of noticing
it either time, if the first event happened twice. It’s extremely useful to be able to describe
probabilities relative to each other in that sort of an intuitive way, because it’s a lot easier
to do that than to determine absolute probabilities. x-space gives us well-behaved addition
and multiplication, which (as we’ll see later) are crucial to the LOD Trader. In practice,
there’s actually very little reason to work with p at all.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

x
=

–l
n(

1
–

p)

p

Figure 14.1

Logarithmic probability compared to linear probability.

188 Part II.  Architecture

14.3 � Criticality and Probability

The next thing we have to look at is what we’ll call the criticality of a character. That rep-
resents how “critical” the character’s realism is to the realism of the scene as a whole—or,
if you like, how critical the player is likely to be about the character’s detail level. In a sense,
that’s what distance stood for when we were using distance-based LOD: All else being
equal, a closer character is more critical to the scene than a farther character.

But all else is not equal. There are other things to use in sussing out criticality. It would
be great if we could hook up eye trackers and EEGs and Ouija boards to the player, but
even without that, there’s plenty of metrics we can pull from the game to help estimate the
criticality of a given entity to the player at a given time.

Before we go further, though, there’s a really key thing about BIRs, and about criticality,
to realize: not all unrealism is alike. Consider two characters. One is a suspected assassin
who the player has been following at a distance for some time. The other is a random
villager crossing the road a few feet ahead of the player. Both characters are important, in a
sense. The first character is clearly the object of the player’s conscious attention; if we can
only afford high-quality path planning for one character, it had better be that one, because
the player is more likely to notice if he’s wandering randomly. But the second one occupies
more screen space, and possibly more of the player’s visual attention—if we can only afford
high-quality locomotion IK for one, it should probably be that one.

14.3.1 � A Field Guide to BIR’s
It’s tempting to throw in the towel at this point, concluding that there are as many kinds
of unrealism as there are AI features whose detail level we’d like to move up and down.
But I think there’s a small set of categories that nearly all BIR’s fall into. Any given reduced
detail level will create the potential for a BIR in at least one of these categories, and some-
times more. The reason to categorize things like this is because each category of BIR can
have its own criticality model.

14.3.1.1 � Unrealistic State

An unrealistic state (US) BIR is the most immediate and obvious type of BIR, where a
character’s immediately observable simulation is wrong. A character eating from an
empty plate, or running in place against a wall, or wearing a bucket on his head creates
the potential for an unrealistic state BIR. (Not a certainty, mind you—the player might not
be looking.) US’s don’t require any long period of observation, only momentary attention,
and the attention need not be voluntary—the eye tends to be drawn to such things.

14.3.1.2 � Fundamental Discontinuity

A fundamental discontinuity (FD) BIR is a little more subtle, but not by much: it occurs when
a character’s current state is incompatible with the player’s memory of his past state. A char-
acter disappearing while momentarily around a corner, or having been frozen in place for
hours while the player was away, or regaining the use of a limb that had been broken creates
the potential for a fundamental discontinuity BIR. These situations can cause US BIR’s too,
of course. But even if the character is not observed while they happen, as long as the player
remembers the old state and later returns, the potential for an FD BIR remains.

18914.  Phenomenal AI Level-of-Detail Control with the LOD Trader

14.3.1.3 � Unrealistic Long-Term Behavior

An unrealistic long-term behavior (ULTB) BIR is the subtlest: It occurs only when an
extended period of observation reveals problems with a character’s behavior. A charac-
ter wandering randomly instead of having goal-driven behaviors is the most common
example of an unrealistic long-term behavior BIR, but so is a car that never runs out of gas.
At any given time, only a small handful of characters are likely to be prone to ULTB BIR’s.

14.4 � Modeling Criticality

Let’s see about coming up with criticality models for these different categories. Each
model calculates a criticality score as the product of several factors, some of which are
shared between multiple models.

For unrealistic state, the factors are observability and attention. Observability comes
closest to graphical LOD: it measures how feasible it is for the player to see the character in
question. Attention is self-evident: it estimates how much attention the player is paying to
a particular character. As you might guess, it’s the most difficult factor to estimate.

For fundamental discontinuity, the two related factors are memory and return time.
Memory estimates how effectively the player has memorized facts about a character, and
how likely they are to notice changes to the character. Return time acts as a modifier to the
memory factor: It estimates how attenuated the player’s memory for the character will be
when she returns to the character, or even if she will ever return at all.

For unrealistic long-term behavior, the three factors are attention, memory, and dura-
tion. Attention and memory have already been introduced (note that the return time
factor is not acting on memory here); the last one, duration, simply refers to how much
time and attention the player has devoted to that character.

There’s the cast of characters. Now let’s come up with actual equations for each one.
Note that later factors will often use earlier factors in their input; the order we’ve listed
them in is a good order to calculate them in.

Before we go into these, though, we need to introduce a tool which will be used in a lot
of them: the exponential moving average (EMA). The EMA is a method for smoothing and
averaging an ongoing sequence of measurements. Given an input function F(t) we produce
the output function G(t). We initialize 0 0() = F(), and then at each time t we update G(t)
as G t F t G t t() = −() ()+ −1 α α (∆), where Δt is the timestep since the last measurement.
The α in that equation is calculated as α = − ⋅e k t∆ , where k is the convergence rate (higher
values lead to faster changes in the average). You can tune k to change the smoothness of
the EMA, and how closely it tracks the input function. We’re going to use the EMA a lot in
these models, so it’s a good idea to familiarize yourself with it (Figure 14.2).

14.4.1 � Observability
This is a straightforward one—an out-of-view character will have an observability of 0, a
nearby and fully visible character will have an observability of 1, and visible but faraway char-
acters will have an observability somewhere in the middle. For character i, you can calculate
this factor as proportional to the amount of screen space (or number of pixels) pi taken up by
the character, divided by some “saturation size” psat referring to how big a character needs
to get before there’s no difficulty observing them, and limited to 1: O min p pi i sat= ()/ ,1 .

190 Part II.  Architecture

We used the amount of screen space taken up by a fully visible character 4 meters away
from the camera as psat . A smaller saturation value may be more appropriate for games
intended for high-definition displays.

14.4.2 � Attention
As mentioned earlier, attention is the most difficult factor to estimate. There are two steps in
determining attention: estimating attempted attention, and applying the effect of interference.

As a first pass, attempted attention Âi can be calculated as the EMA of observability:
ˆ ˆ ∆A t A t t O ti i i() = −()+ −() ()α α1 . For observability, you should tune k to have a rapid

falloff; we used k = 2, which provides a 95% falloff in 1.5 seconds.
You can mix other things into the attempted attention model to improve its accuracy,

though. One player behavior strongly associated with attention is focusing, where the
player attempts to keep the character centered in the camera view. This can be calculated
as the EMA of the dot product between the camera’s forward vector and the vector to
the character, then multiplied by observability. The convergence rate k should be much
lower for this term. Other, more game-specific sources can be drawn on for attempted
attention as well, such as how much of a threat the character is, or how rapid his motions
are. The weighted sum is then used as the attempted attention estimate. For the simple
observability-and-focusing model, we found weights of 0.7 and 0.3, respectively, predicted
attention well.

The player’s attention is not an unlimited resource; the more things they need to con-
centrate on, the less well they concentrate on each one. Once attempted attention has
been calculated for all characters, you should sum the factors up, producing the total
attentional load L. To compensate for the nonlinearity of this interference effect (as well
as interference from sources outside the game), you should also add a constant ambient
attentional load to L. The actual attention estimate for each character is then the ratio of

their attempted attention to the total attentional load: A A
Li
i=

ˆ
, where L A Aamb

j

n

j= +
=
∑ˆ

1
.

The value Âamb is a difficult factor to tune; I would suggest setting it such that it represents
about 1/3 of L during the most attention-intensive situations in your game. Increasing it

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (seconds)

Input data
k = 0.25
k = 1
k = 4

Figure 14.2

The exponential moving average of a data set, with various convergence rates.

19114.  Phenomenal AI Level-of-Detail Control with the LOD Trader

will tend to bias resources towards background characters; decreasing it will bias resources
towards foreground characters.

14.4.3 � Memory
Our model of memory is a simple one based on cognitive models for an experimen-
tal memory task known as associative recognition, and on a phenomenon known as
retroactive interference. In general, a player’s memory Mi of a character will tend toward
their current attention Ai for that character over time. While memorizing (that is, while
memory is increasing), the convergence rate will be a fixed k km= . While forgetting (that
is, while memory is decreasing), we’ll use a different convergence rate k k Lf= , where L is
the total attentional load. So it’s an EMA again, but with k km= if M Ai i< , and k k Lf=
if M Ai i> . We used km = 0 6. and kf = 0 001. , which (for our highest observed attentional
load) resulted in a 95% memorization rate in about 5 seconds, and a 50% forgetting rate
in 10 seconds under a high attentional load. The latter tended to overestimate long-term
retention of memory for characters; this wasn’t a problem for us, but you may need to tune
that factor upward.

14.4.4 � Return Time
Return time is much more objective, because it estimates a player’s actions rather than her
thoughts. It’s somewhat misnamed: the output is not an expected number of seconds until
the player’s return, but rather an expected attenuation factor to current memory at the
moment the player does return, as well as to the probability of the player ever returning at
all. It’s based on something known as the Weibull hazard function. The derivation is rather
involved, but the resultant equation is R k L e k Lti

k Lt= () ()− 0
0Γ , . L is the expected future

attentional load (you can either use the current attentional load, or smooth it with an
EMA), and t0 is the time since the character was last visible (that is, had an observability
greater than 0). k is a tweakable parameter which you can experimentally determine by
fitting observed return times to a Weibull distribution; the value we determined was
approximately 0.8, and we think that’s unlikely to differ much in other games. Γ s x,() is
the upper incomplete gamma function. Implementations of this function are included in
many popular math libraries, including Boost.Math.

14.4.5 � Duration
To finish the criticality model factors on a nice, easy note, duration is the total amount of
attentive observation: the integral of O Ai i over time. That is, D t D t t O A ti i i i() = −()+∆ ∆ .

14.4.6 � Modeling Costs
Compared to criticality scores, costs are much more straightforward and objective to
model. Simply set up your game so that a hundred or so characters are simulating using
a particular detail level, then compare the profiler output with a run using a different
detail level.

14.5 � LOD’s and BIR’s

Again, the reason to categorize BIR’s at all is because each category can have its own criti-
cality score. Having a bit of foot skate is probably less noticeable than running in place

192 Part II.  Architecture

against a wall: The latter behavior is more obvious. We will refer to it as having higher
audacity—that is, a lower LOD will be more audaciously unrealistic. But given two char-
acters, if one is twice as likely to be noticed foot skating as the other, it is also twice as
likely to be noticed running in place as the other. We don’t need to have separate critical-
ity models for the two behaviors, because the same factors affect both. So for a particular
category of BIR (in this case, unrealistic state) each character has a criticality score, and
each detail level (in this case, a type of local steering which can lead to running into walls)
will have an audacity score. To sum up, we have three categories of BIRs, three criticality
scores per character, and three audacity scores per detail level. (Note that we’re only look-
ing at one AI feature for now—in this example, local steering. We’ll move to multiple
features later.)

By the way, that “twice as likely” mentioned above should remind you of Section 14.2.1,
and not by accident. For a single BIR category, we can think of a detail level’s audacity score
in that category as a base probability in x-space (for some “standard-ly critical character”),
and a character’s criticality score in that category as a multiplier to it, the product being the
probability of that character using that detail level causing a BIR in that category.

But it gets better! Or, at least, more elegantly mathy! Since we’re assuming independence,
the probability of that character/detail level combination causing a BIR in any category is
the sum of the products over all three categories. If we stick the detail level’s audacity scores
for all categories into a vector, call it the audacity vector A, and the character’s criticality
scores for all categories into another vector, call it the criticality vector C, the total BIR prob-
ability for the combination is given by the dot product A⋅C. Linear algebra—it’s not just for
geometry anymore!

14.6 � The LOD Trader

Now that we have our model, it’s time to introduce the LOD Trader algorithm itself. We’ll
be adding more capabilities to it through the rest of the article; this initial version controls
a single LOD feature (say, how pathfinding is performed) with multiple available detail
levels, and limits a single resource (say, CPU time).

As you might guess from the name, the LOD Trader is based on a stock trader meta-
phor. Its “portfolio” consists of all the current detail levels for all characters. The LOD
Trader’s goal is to pick a portfolio that minimizes the total probability of a BIR. Of course,
the best possible portfolio would be one where all characters had the highest detail level;
but it must additionally limit the total cost of the portfolio to its available resources,
so that’s (usually) not an option.

Each time the LOD Trader runs, it evaluates its current portfolio and decides on a set
of trades, switching some characters to a higher detail level and other characters to a lower
detail level, as their relative criticalities and the available resources change. Remember,
the total BIR probability for a character being simulated at a particular detail level is the
dot product of the character’s criticality vector and the detail level’s audacity vector. So the
LOD Trader will try to pick detail levels that have low audacity scores corresponding to a
character’s high criticality scores.

Note that for a given trade, we can find a relative cost, but also a relative audacity which
is the difference in the two detail levels’ audacity vectors. Just as the absolute BIR probabil-
ity for a particular detail level is the dot product of the character’s criticality vector and the

19314.  Phenomenal AI Level-of-Detail Control with the LOD Trader

detail level’s audacity vector, the relative BIR probability for a particular trade is the dot
product of the criticality vector with the change in audacity. We’ll refer to increases in BIR
probabilities as upgrades, and to decreases in BIR probabilities as downgrades.

The heuristic the LOD Trader uses to guide its decisions is a simple value-based one:
units of realism improvement divided by units of resource cost. If a character is simulated
at a low detail level, the value of upgrading it to a high detail level is the relative reduc-
tion in the total probability of a BIR divided by the relative increase in resource cost.
Valuable upgrades will have a large reduction in BIR probability and a low increase in
cost. Likewise, if a character is at a high detail level, the value of downgrading it to a lower
detail level is the relative increase in the total probability of a BIR divided by the relative
reduction in cost; valuable downgrades will increase BIR probability only slightly and
decrease the cost by a lot. To keep the math simple, we’ll toss in a negative sign, so that
upgrade values are positive, and more valuable upgrades have larger magnitude values.
For downgrades, values are positive as well, but the most valuable downgrades will have
smaller magnitudes. (The exception, which should be handled specially. Under some cir-
cumstances, a detail upgrade will result in a reduction in cost, or a detail downgrade may
result in an increase in cost. The former should always be chosen; the latter never should.)

During a single run, the LOD Trader runs one or more iterations. In each iteration,
it hypothesizes making a set of trades (both upgrades and downgrades) that would respect
the resource limits and that might result in an overall reduction in BIR probability. If the
hypothetical set of trades does, in fact, reduce BIR probability, the trades are actually
performed, and the trader continues to iterate, to try to find additional trades to make.
Once it finds a hypothetical set of trades which does not reduce BIR probability, it stops
(and does not make those trades).

The algorithm for choosing the hypothetical set of trades is simple. First it consid-
ers upgrades. It repeatedly picks the most valuable available upgrade to add to its set of
trades until it has overspent its resource budget. Then, it repeatedly picks the most valu-
able available downgrade to add to its set of trades until it has not overspent its resource
budget. Upgrades and downgrades are stored in priority queues to reduce the search cost.
Pseudocode for the LOD Trader is in Listing 14.1; remember that this is the initial version,
and we’ll add more features and improve performance later.

14.6.1 � Multiple Features
One of the most useful effects of the multicategory criticality modeling is the ability to
control different kinds of LOD at the same time. For instance, we can control pathfinding
quality (the quality of which primarily affects the probability of a ULTB BIR) and hand
IK (which affects the probability of a US BIR). Put differently, we’d like to control multiple
features (AI systems whose detail is set on a per-character basis). Of course, we could do
that by running multiple LOD Traders, one for each feature. But then we’d have to give
each one a separate budget; there’d be no way to automatically shift resources between
pathfinding and IK as one or the other became important, or to trade a downgrade in the
pathfinding quality of one character for an upgrade in the IK quality of another.

Another problem with the multi-Trader approach is that certain features might
depend on each other. For instance, we might control both a character’s basic behavior
(goal-driven or just standing around) and his pathfinding (high quality, low quality, or
disabled). Goal-driven behavior and disabled pathfinding, of course, aren’t compatible

194 Part II.  Architecture

as detail levels, but there would be no effective way to coordinate the two traders to avoid
that result.

Instead, we let a single LOD Trader balance detail levels of all the features at the same
time. A character’s current “state” as seen by the LOD Trader will not be a single detail
level, but will be the combination of their current detail levels for all the features. We refer
to a set of levels for all features, which respects all the inter-feature constraints, as a feature
solution. Rather than picking individual feature transitions, we will pick feature solution
transitions from one feature solution to another, each of which may result in several fea-
ture transitions. For each feature solution, we’ll precompute and store a list of possible
upgrade transitions and possible downgrade transitions, so that we know which ones to
look at for a character currently at any particular feature solution.

If the set of features is small, this has little impact on the algorithm; the only major
change is the need to check that we don’t pick multiple upgrade or downgrade transitions for
a single character. However, the number of feature solutions increases exponentially with
the number of features. Since we would have to evaluate every character/feature solution
combination and insert it into our priority queues, this could result in a lot of computation,
and a lot of memory usage. Most of this work would be wasted, because it would be spent
on evaluating lots of expensive upgrades for lots of faraway, unimportant characters—ones
we should know we won’t upgrade in any way, given their teeny criticality vectors.

Listing 14.1.  Initial code for the LOD Trader, supporting only one LOD feature and one
resource type.

def runLODTrader(characters, lodLevels, availableResource):
	 acceptedTrades = []
	 while True:
		 upgrades, downgrades = calcAvailableTrades(characters,
lodLevels) # returns p-queues, sorted by value
		 hypTrades = []
		 charactersWithTrades = []
		 hypBenefit = 0
		 hypAvailableResource = availableResource
		 while not upgrades.empty() and availableResource > 0:
			 upgrade = upgrades.pop()
			 hypTrades.append(upgrade)
			 charactersWithTrades.append(upgrade.character)
			 hypAvailableResource -= upgrade.costIncrease
			 hypBenefit += upgrade.probDecrease
		 while not downgrades.empty() and availableResource < 0:
			 downgrade = downgrades.pop()
			 if downgrade.character in charactersWithTrades: continue
			 hypTrades.append(downgrade)
			 charactersWithTrades.append(downgrade.character)
			 hypAvailableResource += downgrade.costDecrease
			 hypBenefit -= downgrade.probIncrease
		 if hypAvailableResource >= 0 and hypBenefit > 0:
			 acceptedTrades += hypothesizedTrades
			 availableResource = hypAvailableResource
		 else
			 return acceptedTrades

19514.  Phenomenal AI Level-of-Detail Control with the LOD Trader

14.6.2 � The Expansion Queue
Instead, we’ll use a new, lazier strategy. Instead of a priority queue of upgrade transitions,
we’ll start with a priority queue of characters; we’ll refer to this as the expansion queue.
The sort key we’ll use for the expansion queue will be the expansion heuristic, which esti-
mates the best possible value that could possibly be attainable by any transition for that
character. This value represents an upper limit on transition value for each character, and
may be over-optimistic, but it will never be pessimistic; in this sense it is similar to an
admissible heuristic for A* search. We’ll select upgrade transitions by “expanding” the
character at the front of the queue (the one with the highest expansion heuristic) into all
of its possible upgrade transitions, and selecting the most valuable one. The pseudocode
for expanding a character is shown in Listing 14.2.

Because the heuristic may be over-optimistic, we can’t guarantee that the character
at the front of the expansion queue actually has the most valuable upgrade transition
among all characters. To compensate for this, we will continue expanding characters
from the expansion queue, even after we’ve overspent our resource budget. Once we’re
overspent, each time we expand a character and choose a new upgrade for our set of
hypothetical trades, we’ll then repeatedly remove and discard the lowest-valued trade
from the upgrades, until we’re only overspending by one trade (that is, removing another
lowest-valued trade would make us underspend). To make this efficient, we’ll store the
set of chosen hypothesized upgrades itself as a priority queue, ordered so that the front
element has the lowest value. Often, the just-expanded, just-inserted upgrade will itself be
the lowest-value trade, and will be removed immediately after being added.

When can we stop doing this? When the worst-value transition already picked—the
one at the front of the hypothesized upgrades queue—has a higher value than the heuris-
tically predicted value at the front of the expansion queue. Because of the admissibility
of the heuristic, we know at this point that we’ll never find a better upgrade than we’ve
already picked, so we can stop without expanding any more characters, and the chosen set
of upgrades is the ones remaining in the hypothesized upgrades queue. In practice, this
happens quite quickly.

The downgrade phase works analogously: we keep an expansion queue sorted by
smallest possible value, and pick the lowest value downgrade for each expanded character,
inserting it into our hypothesized downgrade queue. Once our resource constraint is
no longer violated, after each pick, we continue to pop largest-value downgrades off the
hypothesized downgrades queue until popping the next one would violate the resource
constraint. Once the character at the front of the expansion queue has a larger heuristic

Listing 14.2.  Expanding a character.

def expandCharacter(char, transType):
	 bestRatio = None; bestTrans = None
	 for trans in char.featureSolution.availableTransitions[transType]:
		 ratio = dotProduct(char.C, trans.A)/trans.cost
		 if isBetterRatio(ratio, bestRatio):
			 bestRatio = ratio; bestTrans = trans
	 return bestRatio, bestTrans

196 Part II.  Architecture

value than the downgrade at the front of the hypothesized downgrades queue, we stop
expanding characters.

14.6.3 � Pruning Transitions
Before we get to the best-possible-value heuristic, let’s look at a certain class of feature
solution transitions. These transitions are what one might call “penny-wise and pound-
careless.” Or perhaps one might technically refer to them as stupid. For instance, a feature
transition that upgraded animation IK to the highest possible quality, but kept collision
avoidance turned off, would be stupid. It’s allowed, yes, but it should never be chosen;
well before you decide to spend CPU time on high-quality IK, you should first decide to
keep the character from walking through walls. The possibility of stupid transitions isn’t
a problem for the LOD Trader, because it won’t ever choose them, but it does spend time
evaluating them. As it turns out, a lot of solution transitions—well over half of them,
in our experience—are stupid.

What typifies a stupid transition? In a mathematical sense, it’s being “strictly dominated”
by other transitions; that is, regardless of circumstances, there’s always a more valuable
transition. Let’s examine how we go about identifying those, so we can ignore them.

Remember, the value (for upgrades) is probability benefit—the dot product of criticality
and audacity—divided by relative cost increase. To put this in equation form, for switch-
ing character i from feature solution α to feature solution β, we’ll refer to the change in
resource cost as r r rα β β α, = − , the change in audacity as A A Aα β β α, = − , and the resultant
value as V A C ri i, , , ,/α β α β α β= − ⋅() . (Remember the negative sign—we want positive values
for upgrades, even though higher quality is lower audacity.) That depends on the criticality
vector Ci . The transition from α to β is “stupid” if, for any possible criticality vector, there’s
some other, better feature solution χ such that V Vi i, , , ,α β α χ< .

For a given feature transition, figuring out whether it is strictly dominated can be formu-
lated as a linear programming problem. Alternatively, you can just generate a large number
of random criticality vectors, and find the best transition for each. Any transition which
isn’t chosen at least once is assumed to be strictly dominated, and removed from the list
of upgrades to evaluate at that starting feature solution. For stupid downgrades the same
thing is done but the “best” transitions are the ones with the smallest-magnitude value.

14.6.4 � The Expansion Heuristic
Returning to the heuristic, we’ll use it for the expansion queue—that is, estimating the best
possible value for any transition for each character. Let’s look at that value formula again:
V A C ri i, , , ,/α β α β α β= ⋅() . Rearranged, it’s V C Wi i, , ,α β α β= ⋅ , where W A rα β α β α β, , ,/= . For a par-
ticular starting feature solution α, we can gather the W-vectors for all upgrade transitions
into a matrix Wα α β α γ=  W W, ,, , . Then we can prune it, removing any column that does
not have at least one entry greater than the corresponding entry in a different column.
Once we have the W-matrix stored for each starting feature solution, we can calculate
the heuristic value quite quickly, as the maximum entry in the vector CiWα . We do the
same thing for downgrade transitions, using a separate matrix for those. (Remember, for
downgrades we want smaller values, so we prune columns that do not have at least one
lower entry.) This value heuristic calculation is shown in the pseudocode of Listing 14.3.

19714.  Phenomenal AI Level-of-Detail Control with the LOD Trader

14.6.5 � Multiple Resources
CPU time may not be our only resource constraint. For instance, suppose one of the fea-
tures we’d like to control is whether a character remembers other characters who have
been friendly or hostile towards him. That could easily become a large RAM sink, so we’d
like to keep our memory usage under a particular budget as well. This is a situation where
we might be able to use multiple LOD Traders, one for each resource type, but it’s possible
that a single feature might have ramifications for more than one resource. As before, we’d
like a single trader to do all the work of balancing things. The cost of a detail level will now
be vector-valued, as will the total cost of a feature solution and the relative cost of a feature
solution transition.

The first thing we have to do is adapt our value heuristic. “Dividing by cost” doesn’t
work anymore because cost is a vector. We’ll use a resource multiplier vector M to generate a
scalar metric for cost. During the upgrade phase, the resource multiplier for each resource
type is the reciprocal of the amount of that resource, which is currently unused. If CPU
time is at a premium but there’s plenty of free memory, the resource multiplier vector will
have a larger entry for CPU than RAM. In case a resource is neither over- nor underspent,
it should have a large but not infinite resource multiplier. During the downgrade phase,
the resource multiplier is directly proportional to the amount of overspending; resources
that are not overspent have a resource multiplier of 0. The resource multiplier vector is
recalculated before each upgrade and each downgrade phase, but not during an upgrade
or downgrade phase.

Next, we need to adapt our stopping criteria. Rather than picking upgrades such that
the only resource is overspent by a single upgrade, we will pick upgrades until any resource
is overspent. We will then pick downgrades until no resources are overspent.

We also need to adapt our definition of stupid feature solutions, and our expansion
heuristic. When determining whether a feature solution will ever be chosen, we need to
check it against not only a large number of random criticality vectors, but also resource
multiplier vectors. And when generating Wα β, , we need to maximize it over all possible
resource multiplier vectors: W A M r

M
α β α β α β, , ,/ min= ⋅(). (For both of these, you should con-

sider only normalized resource multipliers.) In order to get the best performance results out
of both feature solution pruning and the expansion heuristic, you should come up with
expected limits on the ratios between resource multipliers, and clip actual resource multi-
pliers to these limits.

Finally, note that some feature solution transitions will have both positive and negative
resource costs: these should be allowed as upgrades, but not allowed as downgrades.

Listing 14.3.  Calculating the value heuristic for a character.

def calcValueHeuristic(char, transType):
	 elems = matrixMul(char.C, char.featureSolution.W)
	 if transType == ‘upgrade’: return max(elems)
	 else: return min(elems)

198 Part II.  Architecture

14.6.6 � Putting it All Together
Listing 14.5. shows the updated pseudocode for multiple features and resources.

14.6.7 � Other Extensions to the LOD Trader
In addition to constraining which levels for different features can be used together, it’s possible
to constrain which levels of a single feature can transition to which other features. For instance,

Listing 14.4.  Making the expansion queue over all characters.

def makeExpansionQueue(characters, M, transType):
	 if transType == ‘upgrade’: expansionQueue = maxQueue()
	 else: expansionQueue = minQueue()
	 for char in characters:
		 valueHeuristic = calcValueHeuristic(char, M, transType)
		 expansionQueue.insert(char, valueHeuristic)

Listing 14.5.  Final pseudocode for the LOD trader, supporting multiple features and
resource types.

def runLODTrader(characters, availableResources):
	 acceptedTrades = []
	 while True:
		 M = calcResourceMultiplier(availableResources)
		 hypUpgrades, hypAvailableResources =
selectTransitions(characters, M, ‘upgrade’, availableResources)
		 M = calcResourceMultiplier(availableResources)
		 hypDowngrades, hypAvailableResources =
selectTransitions(characters, M, ‘downgrade’, hypAvailableResources)
		 hypTrades = hypUpgrades + hypDowngrades
		 if calcTotalBenefit(hypTrades) > 0:
			 acceptedTrades += hypTrades
			 availableResources = hypAvailableResources
		 else:
			 return acceptedTrades
def selectTransitions(characters, M, transType, availableResources):
	 expansionQueue = makeExpansionQueue(characters, M, transType)
	 if transType == ‘upgrade’: transitionHeap = minQueue()
	 else: transitionHeap = maxQueue()
	 while availableResources.allGreaterEqual(0) or
isBetterRatio(expansionQueue.peekKey(), transitionHeap.peekKey()):
		 char = expansionQueue.popValue()
		 bestRatio, bestTrans = expandCharacter(char, M, transType)
		 transitionHeap.insert(bestTrans, bestRatio)
		 availableResources -= bestTrans.costs
		 while (availableResources + transitionHeap.peekValue().costs)).
anyLess(0):
			 discardedTrans = transitionHeap.popValue()
			 availableResources += discardedTrans.costs
	 return transitionHeap.values(), availableResources

19914.  Phenomenal AI Level-of-Detail Control with the LOD Trader

you might transition a character from prerecorded animation to fully dynamic motion, but
not be able to transition back from dynamic motion to prerecorded animation. This can be
done simply by discarding feature solution transitions that include such a transition.

It’s also possible to attach costs and audacities to a feature transition itself, instead of
just to feature levels. Attaching costs to transitions can be useful if the transitioning pro-
cess itself requires nontrivial computation; attaching audacity can be useful if the transi-
tion is liable to produce a visible “pop” or if it involves a loss of character information
which could later lead to a FD or ULTB BIR.

In some situations it’s useful to introduce the concept of a “null” detail level for a par-
ticular LOD feature. For instance, the “standing around” behavior detail level would only
be compatible with the “null” locomotion detail level, and the “doing stuff” behavior
detail level would be compatible with all locomotion detail levels except the null level.

An unusual but useful application of the LOD Trader is as an alternative to the
“simulation bubble” often used to delete faraway characters. This is done by means of an
“existence” LOD feature, with “yes” and “no” levels, where the “no” level is compatible
with all other LOD features being “null” and has zero audacity and zero cost, but where
the transition from “yes” to “no” itself has US and FD audacity. When a character transi-
tions to the “no” existence level, it is removed.

Another unusual but useful application is to consider “save space” as an additional
resource. This can be constrained only when the game is about to be saved, and ensures
that the most useful and memorable bits of game state are kept around when saving to a
device with limited space.

The LOD Trader can also be leveraged in multiplayer games, simply by adding up the
criticality for a given character based on all players currently observing that character.
Because of the additive nature of the x-space probabilities, this will result in correct esti-
mation and minimization of BIR probability. Additionally, the LOD Trader can be used
to ration network bandwidth by controlling update rates and update detail for different
characters; in this situation, a separate LOD Trader instance is run for each player.

Finally, not all characters controlled by the LOD Trader need to have the same LOD
features; you need only maintain different transition sets for each “kind” of character,
and then have the LOD Trader control, say, both pedestrians and stationary shopkeepers.
In fact, not all “characters” controlled by the LOD Trader need be characters at all:
it can heterogeneously manage humans, vehicles, destructible objects, and anything and
everything which can benefit from criticality-driven LOD control.

14.7 � The LOD Trader in Practice

We’ve had great results with the LOD Trader. We implemented it in a free-roaming game
involving hundreds of characters, having it control eight separate features with hundreds
of potential feature solutions. We also implemented conventional distance-based LOD
picking, so that we could compare the two. The trickiest part of the LOD Trader imple-
mentation process was tuning the criticality metrics and audacity vectors, due to their
subjectivity. This is an area where playtester feedback could be extremely helpful.

As expected, distance-based LOD picking was only marginally acceptable. In order
to guarantee a reasonable framerate, it was necessary to set the threshold distances so
close that things like low-quality locomotion could be clearly seen, particularly in sparsely

200 Part II.  Architecture

populated areas of the game world and where there were long, unobstructed lines of sight.
The LOD Trader, in contrast, was very effective at maintaining framerate in the most
crowded situations, and in sparse areas it simulated most characters at the highest LOD.

A controlled, blinded experimental study verified out this impression: Viewers shown
videos of the game running with distance-based LOD picking were consistently more
likely to experience BIRs, and to experience them more often, than viewers shown videos
of the game running with the LOD Trader [Sunshine-Hill 11].

The LOD Trader itself had very good performance: its average execution time was
57 microseconds per frame, or 0.17% of the target frame time. Its memory usage was
500 kB for the transition data and 48 bytes per entity, both of which could easily be halved
by picking narrower datatypes, with no reduction in functionality.

14.8 � Conclusions

As mentioned in the introduction, the LOD Trader isn’t magical. It can’t read the player’s
mind. Its criticality models are approximate, and often very inaccurate.

But that’s okay. The goal of the LOD Trader is not to make wildly audacious detail reduc-
tions and get away with them. Rather, the goal is to be clever enough to do detail reduction
in the right places in those moments when detail reduction has to happen somewhere.
In those moments, the question is not whether to reduce LOD but how to reduce LOD
without causing glaring problems, and we just can’t depend on distance-based LOD pick-
ing to do that.

And we need to be able to depend on our LOD picker. Because detail reduction is
always, always going to be needed. We’ll never have enough computational resources to do
all the things we want to do. And when we’re not doing detail reduction at runtime, that
just means we’re doing it at development time, throwing away good techniques because we
don’t know if we’ll always be able to afford them. That’s the real benefit of the LOD Trader:
the power to implement AI techniques as lavishly detailed as we can imagine, and others
as massively scalable as we can devise, with the confidence that our game will be able to
leverage each one when it counts the most.

References

[Sunshine-Hill 11] B. Sunshine-Hill. Perceptually Driven Simulation (Doctoral dissertation).
Available online (http://repository.upenn.edu/edissertations/435), 2011.

