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14.1	 	Introduction

Of all the techniques which make modern video game graphics possible, level-of-detail 
(LOD) management may very well be the most important, the most groundbreaking, 
and the most game-changing. While LOD seems like a rather boring thing to think of 
as “groundbreaking,” in order to get the graphical quality we want in the world sizes we 
want, it’s crucial to not render everything as though the player was two centimeters away 
from it. With conservatively chosen LOD transition distances, immense speedups are pos-
sible without compromising the realism of the scene in any way. Viewed broadly, even 
things like visibility culling can be considered part of LOD—after all, the lowest detail 
possible for an object is to not render it at all. Graphics programmers rely on LOD. It is, in 
a sense, “how graphics works.”

AI programmers use some form of LOD, too, of course, but we don’t really rely on it. 
We’ll use lower quality locomotion and collision avoidance systems for characters more 
than ten meters away, or simulate out-of-view characters at a lower update rate, or (similar 
to visibility culling above) delete characters entirely when they’re too far away. But while 
graphics programmers can use LOD without compromising realism, whenever we employ 
LOD, in the back of our mind, our conscience whispers, “That’s just a hack … someone’s 
going to notice.” We use LOD only when we absolutely must, because we know that it’s 
bringing down the quality of our AI.
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There’s another sense in which we don’t rely on AI LOD. In graphics, LOD acts as a 
natural limit on scene complexity. The player can only be next to so many objects at once, 
and everything that’s not near the player is cheaper to render, so framerate tends to even 
out. It’s far from a guarantee, of course, but LOD is the first line of defense for maintaining 
the framerate. For AI, however, the techniques we’d really like to use often aren’t feasible 
to run on more than a small handful of NPCs at once, and a cluster of them can easily blow 
our CPU time budget. There’s no “LOD threshold distance” we could pick which would 
respect our budget and give most visible characters the detail we want.

So we use LOD. But it’s not “how AI works.”
What if LOD was smarter? What if it didn’t even use distances, but instead could deter-

mine, with uncanny precision, how “important” each character was? What if it could read 
the player’s mind, and tell the game exactly when to start using high-quality collision 
avoidance for a character, and when to stop? What if it knew which characters the players 
remembered, and which characters they had forgotten? And what if its LOD selections 
always respected the CPU time budget when NPCs decided to cluster around the player, 
but always made good use of the time available when they didn’t?

Well, then, we could trust LOD. We could use techniques as expensive as we wanted, 
because we could rely on LOD to keep them from blowing our budget. We could move 
away from the endless task of tuning LOD thresholds, and hardcoding hack after hack to 
compensate for the endless special cases where our LOD thresholds weren’t enough. LOD 
could become “how AI works.”

That, in a nutshell, is the LOD Trader. It can’t read the player’s mind, but its simple 
 heuristics are light-years beyond distance thresholds in determining how important a char-
acter is to the player. Rather than relying on fixed transition rules, it treats the entire space 
of detail levels—for all the AI features we’d like to control—as a puzzle to be solved each 
frame. It attempts to maximize the realism of the game simulation without going over the 
computation budget, and does it in a remarkably short period of time (tens of microseconds).

It’s not magical. Its heuristics are far from infallible, and the optimality of its LOD solu-
tions is approximate. But it is worlds beyond distance-based LOD, and the first time it out-
smarts you—its LOD reductions becoming subtle and then invisible—you’ll wonder a bit.

14.2	 	Defining	the	Problem

The first thing to do when attacking a problem like “optimal LOD selection” is to figure 
out what we mean by optimal. The graphics guys don’t need to do this, because their LOD 
selections can be made perfectly—they can transition far enough away that they’re not 
giving up any realism. But every detail reduction we make is going to potentially reduce 
realism, so we need to define, in a numeric sense, what we’re trying to maximize, and what 
our constraints are. We need to come up with a metric, a system of units for measurement 
of realism. Yikes.

Well, let’s grab the bull by the horns. I claim that what we’re trying to do is pick a detail 
level for each AI feature, for each character, to minimize the probability that the player will 
notice an issue, an unrealistic reduction in detail. This helps nail things down, because we 
all know all about probabilities and how to compare and do arithmetic with them. In this 
model, Choice A won’t be “a little less realistic” than Choice B, but will rather be “a little 
less likely to be noticed.” We’ll refer to the event of the player actually noticing an issue as a 
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Break in Realism (BIR). A BIR only occurs when the player notices the issue; just reducing 
the detail of an entity isn’t a BIR if she doesn’t notice it as unrealistic.

14.2.1	 	Diving	Into	X-Space
Let’s make things a little cleverer, though. Suppose that the probability of the user notic-
ing that some entity is unrealistic is p. Rather than work with that number directly, we’ll 
work with the number x p= − −( )log 1 . That’s the negative logarithm (base whatever, let’s 
use the traditional e) of the complement of the probability—the probability of getting away 
with it, of the user not noticing. A plot of p versus x is shown in Figure 14.1. As p goes 
up, x goes up. If p is zero, x is zero; as p approaches 1, x approaches infinity. (The inverse 
 equation is p e x= − −1 .)

Why this complication? Well, actually, it’s a simplification; x turns out to be much 
better-behaved than p. First, if we have two potential sources of unrealistic events, with 
(independent) probabilities of being noticed p1  and p2 , and we want to know the total 
probability ptot  of the user noticing either one, that’s p p p p ptot = + −1 2 1 2  , not especially 
nice. For three sources it gets even uglier: p p p p p p p p p p p p ptot = + + − − − +1 2 3 1 2 1 3 2 3 1 2 3.  
In  contrast, x x x xtot = + +1 2 3 . Second, this transformation gives us a better interpreta-
tion of phrases like “twice as unrealistic.” If some event has probability p1 0 6= .  of being 
noticed, and some other event is “twice as unrealistic” as p1 , what is its probability? Clearly 
it can’t be 1.2—that’s not a valid probability. But in x-space things work out fine: x x2 12= , 
which leads to x1 0 91= . , x2 1 82= . , p2 0 84= . . What is 0.84? It’s the probability of noticing 
it either time, if the first event happened twice. It’s extremely useful to be able to describe 
probabilities relative to each other in that sort of an intuitive way, because it’s a lot easier 
to do that than to determine absolute probabilities. x-space gives us well-behaved addition 
and multiplication, which (as we’ll see later) are crucial to the LOD Trader. In practice, 
there’s actually very little reason to work with p at all.
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Figure	14.1

Logarithmic	probability	compared	to	linear	probability.
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14.3	 	Criticality	and	Probability

The next thing we have to look at is what we’ll call the criticality of a character. That rep-
resents how “critical” the character’s realism is to the realism of the scene as a whole—or, 
if you like, how critical the player is likely to be about the character’s detail level. In a sense, 
that’s what distance stood for when we were using distance-based LOD: All else being 
equal, a closer character is more critical to the scene than a farther character.

But all else is not equal. There are other things to use in sussing out criticality. It would 
be great if we could hook up eye trackers and EEGs and Ouija boards to the player, but 
even without that, there’s plenty of metrics we can pull from the game to help estimate the 
criticality of a given entity to the player at a given time.

Before we go further, though, there’s a really key thing about BIRs, and about criticality, 
to realize: not all unrealism is alike. Consider two characters. One is a suspected  assassin 
who the player has been following at a distance for some time. The other is a random 
 villager crossing the road a few feet ahead of the player. Both characters are important, in a 
sense. The first character is clearly the object of the player’s conscious attention; if we can 
only afford high-quality path planning for one character, it had better be that one, because 
the player is more likely to notice if he’s wandering randomly. But the second one occupies 
more screen space, and possibly more of the player’s visual attention—if we can only afford 
high-quality locomotion IK for one, it should probably be that one.

14.3.1	 	A	Field	Guide	to	BIR’s
It’s tempting to throw in the towel at this point, concluding that there are as many kinds 
of unrealism as there are AI features whose detail level we’d like to move up and down. 
But I think there’s a small set of categories that nearly all BIR’s fall into. Any given reduced 
detail level will create the potential for a BIR in at least one of these categories, and some-
times more. The reason to categorize things like this is because each category of BIR can 
have its own criticality model.

14.3.1.1  Unrealistic State

An unrealistic state (US) BIR is the most immediate and obvious type of BIR, where a 
character’s immediately observable simulation is wrong. A character eating from an 
empty plate, or running in place against a wall, or wearing a bucket on his head creates 
the potential for an unrealistic state BIR. (Not a certainty, mind you—the player might not 
be looking.) US’s don’t require any long period of observation, only momentary attention, 
and the attention need not be voluntary—the eye tends to be drawn to such things.

14.3.1.2  Fundamental Discontinuity

A fundamental discontinuity (FD) BIR is a little more subtle, but not by much: it occurs when 
a character’s current state is incompatible with the player’s memory of his past state. A char-
acter disappearing while momentarily around a corner, or having been frozen in place for 
hours while the player was away, or regaining the use of a limb that had been  broken creates 
the potential for a fundamental discontinuity BIR. These situations can cause US BIR’s too, 
of course. But even if the character is not observed while they happen, as long as the player 
remembers the old state and later returns, the potential for an FD BIR remains.
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14.3.1.3  Unrealistic Long-Term Behavior

An unrealistic long-term behavior (ULTB) BIR is the subtlest: It occurs only when an 
extended period of observation reveals problems with a character’s behavior. A charac-
ter wandering randomly instead of having goal-driven behaviors is the most common 
example of an unrealistic long-term behavior BIR, but so is a car that never runs out of gas. 
At any given time, only a small handful of characters are likely to be prone to ULTB BIR’s.

14.4	 	Modeling	Criticality

Let’s see about coming up with criticality models for these different categories. Each 
model calculates a criticality score as the product of several factors, some of which are 
shared between multiple models.

For unrealistic state, the factors are observability and attention. Observability comes 
closest to graphical LOD: it measures how feasible it is for the player to see the character in 
question. Attention is self-evident: it estimates how much attention the player is paying to 
a particular character. As you might guess, it’s the most difficult factor to estimate.

For fundamental discontinuity, the two related factors are memory and return time. 
Memory estimates how effectively the player has memorized facts about a character, and 
how likely they are to notice changes to the character. Return time acts as a modifier to the 
memory factor: It estimates how attenuated the player’s memory for the character will be 
when she returns to the character, or even if she will ever return at all.

For unrealistic long-term behavior, the three factors are attention, memory, and dura-
tion. Attention and memory have already been introduced (note that the return time 
 factor is not acting on memory here); the last one, duration, simply refers to how much 
time and attention the player has devoted to that character.

There’s the cast of characters. Now let’s come up with actual equations for each one. 
Note that later factors will often use earlier factors in their input; the order we’ve listed 
them in is a good order to calculate them in.

Before we go into these, though, we need to introduce a tool which will be used in a lot 
of them: the exponential moving average (EMA). The EMA is a method for smoothing and 
averaging an ongoing sequence of measurements. Given an input function F(t) we produce 
the output function G(t). We initialize 0 0( ) = F( ), and then at each time t we update G(t) 
as G t F t G t t( ) = −( ) ( )+ −1 α α ( ∆ ), where Δt is the timestep since the last measurement. 
The α in that equation is calculated as α = − ⋅e k t∆ , where k is the convergence rate (higher 
values lead to faster changes in the average). You can tune k to change the smoothness of 
the EMA, and how closely it tracks the input function. We’re going to use the EMA a lot in 
these models, so it’s a good idea to familiarize yourself with it (Figure 14.2).

14.4.1	 	Observability
This is a straightforward one—an out-of-view character will have an observability of 0, a 
nearby and fully visible character will have an observability of 1, and visible but faraway char-
acters will have an observability somewhere in the middle. For character i, you can calculate 
this factor as proportional to the amount of screen space (or number of pixels) pi  taken up by 
the character, divided by some “saturation size” psat  referring to how big a character needs 
to get before there’s no difficulty observing them, and limited to 1: O min p pi i sat= ( )/ ,1 .
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We used the amount of screen space taken up by a fully visible character 4 meters away 
from the camera as psat . A smaller saturation value may be more appropriate for games 
intended for high-definition displays.

14.4.2	 	Attention
As mentioned earlier, attention is the most difficult factor to estimate. There are two steps in 
determining attention: estimating attempted attention, and applying the effect of interference.

As a first pass, attempted attention Âi  can be calculated as the EMA of  observability: 
ˆ ˆ ∆A t A t t O ti i i( ) = −( )+ −( ) ( )α α1 . For observability, you should tune k to have a rapid 

 falloff; we used k = 2, which provides a 95% falloff in 1.5 seconds.
You can mix other things into the attempted attention model to improve its accuracy, 

though. One player behavior strongly associated with attention is focusing, where the 
player attempts to keep the character centered in the camera view. This can be calculated 
as the EMA of the dot product between the camera’s forward vector and the vector to 
the character, then multiplied by observability. The convergence rate k should be much 
lower for this term. Other, more game-specific sources can be drawn on for attempted 
attention as well, such as how much of a threat the character is, or how rapid his motions 
are. The weighted sum is then used as the attempted attention estimate. For the simple 
observability-and-focusing model, we found weights of 0.7 and 0.3, respectively, predicted 
attention well.

The player’s attention is not an unlimited resource; the more things they need to con-
centrate on, the less well they concentrate on each one. Once attempted attention has 
been calculated for all characters, you should sum the factors up, producing the total 
attentional load L. To compensate for the nonlinearity of this interference effect (as well 
as interference from sources outside the game), you should also add a constant ambient 
attentional load to L. The actual attention estimate for each character is then the ratio of 

their attempted attention to the total attentional load: A A
Li
i=

ˆ
, where L A Aamb

j

n

j= +
=
∑ˆ

1
. 

The value Âamb is a difficult factor to tune; I would suggest setting it such that it represents 
about 1/3 of L during the most attention-intensive situations in your game. Increasing it 
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Figure	14.2

The	exponential	moving	average	of	a	data	set,	with	various	convergence	rates.
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will tend to bias resources towards background characters; decreasing it will bias resources 
towards foreground characters.

14.4.3	 	Memory
Our model of memory is a simple one based on cognitive models for an experimen-
tal memory task known as associative recognition, and on a phenomenon known as 
 retroactive interference. In general, a player’s memory Mi  of a character will tend toward 
their current attention Ai  for that character over time. While memorizing (that is, while 
memory is increasing), the convergence rate will be a fixed k km= . While forgetting (that 
is, while memory is decreasing), we’ll use a different convergence rate k k Lf= , where L is 
the total attentional load. So it’s an EMA again, but with k km=  if M Ai i< , and k k Lf=  
if M Ai i> . We used km = 0 6.  and kf = 0 001. , which (for our highest observed attentional 
load) resulted in a 95% memorization rate in about 5 seconds, and a 50% forgetting rate 
in 10 seconds under a high attentional load. The latter tended to overestimate long-term 
retention of memory for characters; this wasn’t a problem for us, but you may need to tune 
that factor upward.

14.4.4	 	Return	Time
Return time is much more objective, because it estimates a player’s actions rather than her 
thoughts. It’s somewhat misnamed: the output is not an expected number of seconds until 
the player’s return, but rather an expected attenuation factor to current memory at the 
moment the player does return, as well as to the probability of the player ever returning at 
all. It’s based on something known as the Weibull hazard function. The derivation is rather 
involved, but the resultant equation is R k L e k Lti

k Lt= ( ) ( )− 0
0Γ , . L is the expected future 

attentional load (you can either use the current attentional load, or smooth it with an 
EMA), and t0  is the time since the character was last visible (that is, had an observability 
greater than 0). k is a tweakable parameter which you can experimentally determine by 
fitting observed return times to a Weibull distribution; the value we determined was 
approximately 0.8, and we think that’s unlikely to differ much in other games. Γ s x,( )  is 
the upper incomplete gamma function. Implementations of this function are included in 
many popular math libraries, including Boost.Math.

14.4.5	 	Duration
To finish the criticality model factors on a nice, easy note, duration is the total amount of 
attentive observation: the integral of O Ai i  over time. That is, D t D t t O A ti i i i( ) = −( )+∆ ∆ .

14.4.6	 	Modeling	Costs
Compared to criticality scores, costs are much more straightforward and objective to 
model. Simply set up your game so that a hundred or so characters are simulating using 
a particular detail level, then compare the profiler output with a run using a different 
detail level.

14.5	 	LOD’s	and	BIR’s

Again, the reason to categorize BIR’s at all is because each category can have its own criti-
cality score. Having a bit of foot skate is probably less noticeable than running in place 
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against a wall: The latter behavior is more obvious. We will refer to it as having higher 
audacity—that is, a lower LOD will be more audaciously unrealistic. But given two char-
acters, if one is twice as likely to be noticed foot skating as the other, it is also twice as 
likely to be noticed running in place as the other. We don’t need to have separate critical-
ity  models for the two behaviors, because the same factors affect both. So for a particular 
category of BIR (in this case, unrealistic state) each character has a criticality score, and 
each detail level (in this case, a type of local steering which can lead to running into walls) 
will have an audacity score. To sum up, we have three categories of BIRs, three criticality  
scores per character, and three audacity scores per detail level. (Note that we’re only look-
ing at one AI feature for now—in this example, local steering. We’ll move to multiple 
features later.)

By the way, that “twice as likely” mentioned above should remind you of Section 14.2.1, 
and not by accident. For a single BIR category, we can think of a detail level’s audacity score 
in that category as a base probability in x-space (for some “standard-ly critical  character”), 
and a character’s criticality score in that category as a multiplier to it, the product being the 
probability of that character using that detail level causing a BIR in that category.

But it gets better! Or, at least, more elegantly mathy! Since we’re assuming independence, 
the probability of that character/detail level combination causing a BIR in any category is 
the sum of the products over all three categories. If we stick the detail level’s audacity scores 
for all categories into a vector, call it the audacity vector A, and the character’s criticality 
scores for all categories into another vector, call it the criticality vector C, the total BIR prob-
ability for the combination is given by the dot product A⋅C. Linear algebra—it’s not just for 
geometry anymore!

14.6	 	The	LOD	Trader

Now that we have our model, it’s time to introduce the LOD Trader algorithm itself. We’ll 
be adding more capabilities to it through the rest of the article; this initial version controls 
a single LOD feature (say, how pathfinding is performed) with multiple available detail 
levels, and limits a single resource (say, CPU time).

As you might guess from the name, the LOD Trader is based on a stock trader meta-
phor. Its “portfolio” consists of all the current detail levels for all characters. The LOD 
Trader’s goal is to pick a portfolio that minimizes the total probability of a BIR. Of course, 
the best possible portfolio would be one where all characters had the highest detail level; 
but it must additionally limit the total cost of the portfolio to its available resources, 
so that’s (usually) not an option.

Each time the LOD Trader runs, it evaluates its current portfolio and decides on a set 
of trades, switching some characters to a higher detail level and other characters to a lower 
detail level, as their relative criticalities and the available resources change. Remember, 
the total BIR probability for a character being simulated at a particular detail level is the 
dot product of the character’s criticality vector and the detail level’s audacity vector. So the 
LOD Trader will try to pick detail levels that have low audacity scores corresponding to a 
character’s high criticality scores.

Note that for a given trade, we can find a relative cost, but also a relative audacity which 
is the difference in the two detail levels’ audacity vectors. Just as the absolute BIR probabil-
ity for a particular detail level is the dot product of the character’s criticality vector and the 
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detail level’s audacity vector, the relative BIR probability for a particular trade is the dot 
product of the criticality vector with the change in audacity. We’ll refer to increases in BIR 
probabilities as upgrades, and to decreases in BIR probabilities as downgrades.

The heuristic the LOD Trader uses to guide its decisions is a simple value-based one: 
units of realism improvement divided by units of resource cost. If a character is simulated 
at a low detail level, the value of upgrading it to a high detail level is the relative reduc-
tion in the total probability of a BIR divided by the relative increase in resource cost. 
Valuable upgrades will have a large reduction in BIR probability and a low increase in 
cost. Likewise, if a character is at a high detail level, the value of downgrading it to a lower 
detail level is the relative increase in the total probability of a BIR divided by the relative 
reduction in cost; valuable downgrades will increase BIR probability only slightly and 
decrease the cost by a lot. To keep the math simple, we’ll toss in a negative sign, so that 
upgrade values are positive, and more valuable upgrades have larger magnitude values. 
For downgrades, values are positive as well, but the most valuable downgrades will have 
smaller magnitudes. (The exception, which should be handled specially. Under some cir-
cumstances, a detail upgrade will result in a reduction in cost, or a detail downgrade may 
result in an increase in cost. The former should always be chosen; the latter never should.)

During a single run, the LOD Trader runs one or more iterations. In each iteration, 
it hypothesizes making a set of trades (both upgrades and downgrades) that would respect 
the resource limits and that might result in an overall reduction in BIR probability. If the 
hypothetical set of trades does, in fact, reduce BIR probability, the trades are actually 
performed, and the trader continues to iterate, to try to find additional trades to make. 
Once it finds a hypothetical set of trades which does not reduce BIR probability, it stops 
(and does not make those trades).

The algorithm for choosing the hypothetical set of trades is simple. First it consid-
ers upgrades. It repeatedly picks the most valuable available upgrade to add to its set of 
trades until it has overspent its resource budget. Then, it repeatedly picks the most valu-
able available downgrade to add to its set of trades until it has not overspent its resource 
budget. Upgrades and downgrades are stored in priority queues to reduce the search cost. 
Pseudocode for the LOD Trader is in Listing 14.1; remember that this is the initial version, 
and we’ll add more features and improve performance later.

14.6.1	 	Multiple	Features
One of the most useful effects of the multicategory criticality modeling is the ability to 
control different kinds of LOD at the same time. For instance, we can control pathfinding 
quality (the quality of which primarily affects the probability of a ULTB BIR) and hand 
IK (which affects the probability of a US BIR). Put differently, we’d like to control multiple 
features (AI systems whose detail is set on a per-character basis). Of course, we could do 
that by running multiple LOD Traders, one for each feature. But then we’d have to give 
each one a separate budget; there’d be no way to automatically shift resources between 
pathfinding and IK as one or the other became important, or to trade a downgrade in the 
pathfinding quality of one character for an upgrade in the IK quality of another.

Another problem with the multi-Trader approach is that certain features might 
depend on each other. For instance, we might control both a character’s basic behavior 
(goal-driven or just standing around) and his pathfinding (high quality, low quality, or 
disabled). Goal-driven behavior and disabled pathfinding, of course, aren’t compatible 
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as detail levels, but there would be no effective way to coordinate the two traders to avoid 
that result.

Instead, we let a single LOD Trader balance detail levels of all the features at the same 
time. A character’s current “state” as seen by the LOD Trader will not be a single detail 
level, but will be the combination of their current detail levels for all the features. We refer 
to a set of levels for all features, which respects all the inter-feature constraints, as a feature 
solution. Rather than picking individual feature transitions, we will pick feature solution 
transitions from one feature solution to another, each of which may result in several fea-
ture transitions. For each feature solution, we’ll precompute and store a list of possible 
upgrade transitions and possible downgrade transitions, so that we know which ones to 
look at for a character currently at any particular feature solution.

If the set of features is small, this has little impact on the algorithm; the only major 
change is the need to check that we don’t pick multiple upgrade or downgrade transitions for 
a single character. However, the number of feature solutions increases exponentially with 
the number of features. Since we would have to evaluate every character/feature solution 
combination and insert it into our priority queues, this could result in a lot of computation, 
and a lot of memory usage. Most of this work would be wasted, because it would be spent 
on evaluating lots of expensive upgrades for lots of faraway, unimportant characters—ones 
we should know we won’t upgrade in any way, given their teeny criticality vectors.

Listing 14.1. Initial	code	for	the	LOD	Trader,	supporting	only	one	LOD	feature	and	one	
resource	type.

def runLODTrader(characters, lodLevels, availableResource):
 acceptedTrades = []
 while True:
  upgrades, downgrades = calcAvailableTrades(characters, 
lodLevels) # returns p-queues, sorted by value
  hypTrades = []
  charactersWithTrades = []
  hypBenefit = 0
  hypAvailableResource = availableResource
  while not upgrades.empty() and availableResource > 0:
   upgrade = upgrades.pop()
   hypTrades.append(upgrade)
   charactersWithTrades.append(upgrade.character)
   hypAvailableResource -= upgrade.costIncrease
   hypBenefit += upgrade.probDecrease
  while not downgrades.empty() and availableResource < 0:
   downgrade = downgrades.pop()
   if downgrade.character in charactersWithTrades: continue
   hypTrades.append(downgrade)
   charactersWithTrades.append(downgrade.character)
   hypAvailableResource += downgrade.costDecrease
   hypBenefit -= downgrade.probIncrease
  if hypAvailableResource >= 0 and hypBenefit > 0:
   acceptedTrades += hypothesizedTrades
   availableResource = hypAvailableResource
  else
   return acceptedTrades
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14.6.2	 	The	Expansion	Queue
Instead, we’ll use a new, lazier strategy. Instead of a priority queue of upgrade transitions, 
we’ll start with a priority queue of characters; we’ll refer to this as the expansion queue. 
The sort key we’ll use for the expansion queue will be the expansion heuristic, which esti-
mates the best possible value that could possibly be attainable by any transition for that 
character. This value represents an upper limit on transition value for each character, and 
may be over-optimistic, but it will never be pessimistic; in this sense it is similar to an 
admissible heuristic for A* search. We’ll select upgrade transitions by “expanding” the 
character at the front of the queue (the one with the highest expansion heuristic) into all 
of its possible upgrade transitions, and selecting the most valuable one. The pseudocode 
for expanding a character is shown in Listing 14.2.

Because the heuristic may be over-optimistic, we can’t guarantee that the character 
at the front of the expansion queue actually has the most valuable upgrade transition 
among all characters. To compensate for this, we will continue expanding characters 
from the expansion queue, even after we’ve overspent our resource budget. Once we’re 
overspent, each time we expand a character and choose a new upgrade for our set of 
hypothetical trades, we’ll then repeatedly remove and discard the lowest-valued trade 
from the upgrades, until we’re only overspending by one trade (that is, removing another 
lowest-valued trade would make us underspend). To make this efficient, we’ll store the 
set of chosen  hypothesized upgrades itself as a priority queue, ordered so that the front 
 element has the lowest value. Often, the just-expanded, just-inserted upgrade will itself be 
the lowest-value trade, and will be removed immediately after being added.

When can we stop doing this? When the worst-value transition already picked—the 
one at the front of the hypothesized upgrades queue—has a higher value than the heuris-
tically predicted value at the front of the expansion queue. Because of the admissibility 
of the heuristic, we know at this point that we’ll never find a better upgrade than we’ve 
already picked, so we can stop without expanding any more characters, and the chosen set 
of upgrades is the ones remaining in the hypothesized upgrades queue. In practice, this 
happens quite quickly.

The downgrade phase works analogously: we keep an expansion queue sorted by 
smallest  possible value, and pick the lowest value downgrade for each expanded character , 
inserting it into our hypothesized downgrade queue. Once our resource constraint is 
no longer violated, after each pick, we continue to pop largest-value downgrades off the 
hypothesized downgrades queue until popping the next one would violate the resource 
constraint. Once the character at the front of the expansion queue has a larger heuristic 

Listing 14.2. Expanding	a	character.

def expandCharacter(char, transType):
 bestRatio = None; bestTrans = None
 for trans in char.featureSolution.availableTransitions[transType]:
  ratio = dotProduct(char.C, trans.A)/trans.cost
  if isBetterRatio(ratio, bestRatio):
   bestRatio = ratio; bestTrans = trans
 return bestRatio, bestTrans
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value than the downgrade at the front of the hypothesized downgrades queue, we stop 
expanding characters.

14.6.3	 	Pruning	Transitions
Before we get to the best-possible-value heuristic, let’s look at a certain class of feature 
solution transitions. These transitions are what one might call “penny-wise and pound-
careless.” Or perhaps one might technically refer to them as stupid. For instance, a feature 
transition that upgraded animation IK to the highest possible quality, but kept collision 
avoidance turned off, would be stupid. It’s allowed, yes, but it should never be chosen; 
well before you decide to spend CPU time on high-quality IK, you should first decide to 
keep the character from walking through walls. The possibility of stupid transitions isn’t 
a problem for the LOD Trader, because it won’t ever choose them, but it does spend time 
evaluating them. As it turns out, a lot of solution transitions—well over half of them, 
in our experience—are stupid.

What typifies a stupid transition? In a mathematical sense, it’s being “strictly  dominated” 
by other transitions; that is, regardless of circumstances, there’s always a more valuable 
transition. Let’s examine how we go about identifying those, so we can ignore them.

Remember, the value (for upgrades) is probability benefit—the dot product of criticality 
and audacity—divided by relative cost increase. To put this in equation form, for switch-
ing character i from feature solution α to feature solution β, we’ll refer to the change in 
resource cost as r r rα β β α, = − , the change in audacity as A A Aα β β α, = − , and the resultant 
value as V A C ri i, , , ,/α β α β α β= − ⋅( ) . (Remember the negative sign—we want positive values 
for upgrades, even though higher quality is lower audacity.) That depends on the criticality 
vector Ci . The transition from α to β is “stupid” if, for any possible criticality vector, there’s 
some other, better feature solution χ such that V Vi i, , , ,α β α χ< .

For a given feature transition, figuring out whether it is strictly dominated can be formu-
lated as a linear programming problem. Alternatively, you can just generate a large number 
of random criticality vectors, and find the best transition for each. Any transition which 
isn’t chosen at least once is assumed to be strictly dominated, and removed from the list 
of upgrades to evaluate at that starting feature solution. For stupid downgrades the same 
thing is done but the “best” transitions are the ones with the smallest-magnitude value.

14.6.4	 	The	Expansion	Heuristic
Returning to the heuristic, we’ll use it for the expansion queue—that is, estimating the best 
possible value for any transition for each character. Let’s look at that value formula again: 
V A C ri i, , , ,/α β α β α β= ⋅( ) . Rearranged, it’s V C Wi i, , ,α β α β= ⋅ , where W A rα β α β α β, , ,/= . For a par-
ticular starting feature solution α, we can gather the W-vectors for all upgrade transitions 
into a matrix Wα α β α γ=  W W, ,, , . Then we can prune it, removing any column that does 
not have at least one entry greater than the corresponding entry in a different column. 
Once we have the W-matrix stored for each starting feature solution, we can  calculate 
the heuristic value quite quickly, as the maximum entry in the vector CiWα . We do the 
same thing for downgrade transitions, using a separate matrix for those. (Remember, for 
downgrades we want smaller values, so we prune columns that do not have at least one 
lower entry.) This value heuristic calculation is shown in the pseudocode of Listing 14.3.
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14.6.5	 	Multiple	Resources
CPU time may not be our only resource constraint. For instance, suppose one of the fea-
tures we’d like to control is whether a character remembers other characters who have 
been friendly or hostile towards him. That could easily become a large RAM sink, so we’d 
like to keep our memory usage under a particular budget as well. This is a situation where 
we might be able to use multiple LOD Traders, one for each resource type, but it’s possible 
that a single feature might have ramifications for more than one resource. As before, we’d 
like a single trader to do all the work of balancing things. The cost of a detail level will now 
be vector-valued, as will the total cost of a feature solution and the relative cost of a feature 
solution transition.

The first thing we have to do is adapt our value heuristic. “Dividing by cost” doesn’t 
work anymore because cost is a vector. We’ll use a resource multiplier vector M to generate a 
scalar metric for cost. During the upgrade phase, the resource multiplier for each resource 
type is the reciprocal of the amount of that resource, which is currently unused. If CPU 
time is at a premium but there’s plenty of free memory, the resource multiplier vector will 
have a larger entry for CPU than RAM. In case a resource is neither over- nor underspent, 
it should have a large but not infinite resource multiplier. During the downgrade phase, 
the resource multiplier is directly proportional to the amount of overspending; resources 
that are not overspent have a resource multiplier of 0. The resource multiplier vector is 
recalculated before each upgrade and each downgrade phase, but not during an upgrade 
or downgrade phase.

Next, we need to adapt our stopping criteria. Rather than picking upgrades such that 
the only resource is overspent by a single upgrade, we will pick upgrades until any resource 
is overspent. We will then pick downgrades until no resources are overspent.

We also need to adapt our definition of stupid feature solutions, and our expansion 
heuristic. When determining whether a feature solution will ever be chosen, we need to 
check it against not only a large number of random criticality vectors, but also resource 
multiplier vectors. And when generating Wα β, , we need to maximize it over all possible 
resource multiplier vectors: W A M r

M
α β α β α β, , ,/ min= ⋅( ). (For both of these, you should con-

sider only normalized resource multipliers.) In order to get the best performance results out 
of both feature solution pruning and the expansion heuristic, you should come up with 
expected limits on the ratios between resource multipliers, and clip actual resource multi-
pliers to these limits.

Finally, note that some feature solution transitions will have both positive and negative 
resource costs: these should be allowed as upgrades, but not allowed as downgrades.

Listing 14.3. Calculating	the	value	heuristic	for	a	character.

def calcValueHeuristic(char, transType):
 elems = matrixMul(char.C, char.featureSolution.W)
 if transType == ‘upgrade’: return max(elems)
 else: return min(elems)
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14.6.6	 	Putting	it	All	Together
Listing 14.5. shows the updated pseudocode for multiple features and resources.

14.6.7	 	Other	Extensions	to	the	LOD	Trader
In addition to constraining which levels for different features can be used together, it’s possible 
to constrain which levels of a single feature can transition to which other features. For instance, 

Listing 14.4. Making	the	expansion	queue	over	all	characters.

def makeExpansionQueue(characters, M, transType):
 if transType == ‘upgrade’: expansionQueue = maxQueue()
 else: expansionQueue = minQueue()
 for char in characters:
  valueHeuristic = calcValueHeuristic(char, M, transType)
  expansionQueue.insert(char, valueHeuristic)

Listing 14.5. Final	pseudocode	for	the	LOD	trader,	supporting	multiple	features	and	
resource	types.

def runLODTrader(characters, availableResources):
 acceptedTrades = []
 while True:
  M = calcResourceMultiplier(availableResources)
  hypUpgrades, hypAvailableResources = 
selectTransitions(characters, M, ‘upgrade’, availableResources)
  M = calcResourceMultiplier(availableResources)
  hypDowngrades, hypAvailableResources = 
selectTransitions(characters, M, ‘downgrade’, hypAvailableResources)
  hypTrades = hypUpgrades + hypDowngrades
  if calcTotalBenefit(hypTrades) > 0:
   acceptedTrades += hypTrades
   availableResources = hypAvailableResources
  else:
   return acceptedTrades
def selectTransitions(characters, M, transType, availableResources):
 expansionQueue = makeExpansionQueue(characters, M, transType)
 if transType == ‘upgrade’: transitionHeap = minQueue()
 else: transitionHeap = maxQueue()
 while availableResources.allGreaterEqual(0) or 
isBetterRatio(expansionQueue.peekKey(), transitionHeap.peekKey()):
  char = expansionQueue.popValue()
  bestRatio, bestTrans = expandCharacter(char, M, transType)
  transitionHeap.insert(bestTrans, bestRatio)
  availableResources -= bestTrans.costs
  while (availableResources + transitionHeap.peekValue().costs)).
anyLess(0):
   discardedTrans = transitionHeap.popValue()
   availableResources += discardedTrans.costs
 return transitionHeap.values(), availableResources
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you might transition a character from prerecorded animation to fully dynamic motion, but 
not be able to transition back from dynamic motion to prerecorded animation. This can be 
done simply by discarding feature solution transitions that include such a transition.

It’s also possible to attach costs and audacities to a feature transition itself, instead of 
just to feature levels. Attaching costs to transitions can be useful if the transitioning pro-
cess itself requires nontrivial computation; attaching audacity can be useful if the transi-
tion is liable to produce a visible “pop” or if it involves a loss of character information 
which could later lead to a FD or ULTB BIR.

In some situations it’s useful to introduce the concept of a “null” detail level for a par-
ticular LOD feature. For instance, the “standing around” behavior detail level would only 
be compatible with the “null” locomotion detail level, and the “doing stuff” behavior 
detail level would be compatible with all locomotion detail levels except the null level.

An unusual but useful application of the LOD Trader is as an alternative to the 
“ simulation bubble” often used to delete faraway characters. This is done by means of an 
“existence” LOD feature, with “yes” and “no” levels, where the “no” level is compatible 
with all other LOD features being “null” and has zero audacity and zero cost, but where 
the transition from “yes” to “no” itself has US and FD audacity. When a character transi-
tions to the “no” existence level, it is removed.

Another unusual but useful application is to consider “save space” as an additional 
resource. This can be constrained only when the game is about to be saved, and ensures 
that the most useful and memorable bits of game state are kept around when saving to a 
device with limited space.

The LOD Trader can also be leveraged in multiplayer games, simply by adding up the 
criticality for a given character based on all players currently observing that character. 
Because of the additive nature of the x-space probabilities, this will result in correct esti-
mation and minimization of BIR probability. Additionally, the LOD Trader can be used 
to ration network bandwidth by controlling update rates and update detail for different 
characters; in this situation, a separate LOD Trader instance is run for each player.

Finally, not all characters controlled by the LOD Trader need to have the same LOD 
features; you need only maintain different transition sets for each “kind” of character, 
and then have the LOD Trader control, say, both pedestrians and stationary  shopkeepers. 
In fact, not all “characters” controlled by the LOD Trader need be characters at all: 
it can  heterogeneously manage humans, vehicles, destructible objects, and anything and 
 everything which can benefit from criticality-driven LOD control.

14.7	 	The	LOD	Trader	in	Practice

We’ve had great results with the LOD Trader. We implemented it in a free-roaming game 
involving hundreds of characters, having it control eight separate features with hundreds 
of potential feature solutions. We also implemented conventional distance-based LOD 
picking, so that we could compare the two. The trickiest part of the LOD Trader imple-
mentation process was tuning the criticality metrics and audacity vectors, due to their 
subjectivity. This is an area where playtester feedback could be extremely helpful.

As expected, distance-based LOD picking was only marginally acceptable. In order 
to guarantee a reasonable framerate, it was necessary to set the threshold distances so 
close that things like low-quality locomotion could be clearly seen, particularly in sparsely 
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populated areas of the game world and where there were long, unobstructed lines of sight. 
The LOD Trader, in contrast, was very effective at maintaining framerate in the most 
crowded situations, and in sparse areas it simulated most characters at the highest LOD.

A controlled, blinded experimental study verified out this impression: Viewers shown 
videos of the game running with distance-based LOD picking were consistently more 
likely to experience BIRs, and to experience them more often, than viewers shown videos 
of the game running with the LOD Trader [Sunshine-Hill 11].

The LOD Trader itself had very good performance: its average execution time was 
57  microseconds per frame, or 0.17% of the target frame time. Its memory usage was 
500 kB for the transition data and 48 bytes per entity, both of which could easily be halved 
by picking narrower datatypes, with no reduction in functionality.

14.8	 	Conclusions

As mentioned in the introduction, the LOD Trader isn’t magical. It can’t read the player’s 
mind. Its criticality models are approximate, and often very inaccurate.

But that’s okay. The goal of the LOD Trader is not to make wildly audacious detail reduc-
tions and get away with them. Rather, the goal is to be clever enough to do detail reduction 
in the right places in those moments when detail reduction has to happen  somewhere. 
In  those moments, the question is not whether to reduce LOD but how to reduce LOD 
without causing glaring problems, and we just can’t depend on distance-based LOD pick-
ing to do that.

And we need to be able to depend on our LOD picker. Because detail reduction is 
always, always going to be needed. We’ll never have enough computational resources to do 
all the things we want to do. And when we’re not doing detail reduction at runtime, that 
just means we’re doing it at development time, throwing away good techniques because we 
don’t know if we’ll always be able to afford them. That’s the real benefit of the LOD Trader: 
the power to implement AI techniques as lavishly detailed as we can imagine, and others 
as massively scalable as we can devise, with the confidence that our game will be able to 
leverage each one when it counts the most.
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