
169

Hierarchical	Plan-Space	Planning	
for	Multi-unit	Combat	Maneuvers
William van der Sterren

13

13.1	 	Introduction

In combat simulators and war games, coming up with a good plan is half the battle. Good
plans make the AI a more convincing opponent and a more reliable assistant commander.
Good plans are essential for clear and effective coordination between combat units toward
a joint objective.

This chapter describes the design of an AI planner capable of producing plans that
coordinate multiple units into a joint maneuver on the battlefield. First, it looks at how
planning for multiple units is different from planning for a single unit. Then it introduces
the basic ideas of hierarchical plan-space planning. These ideas are made more concrete
for the case of combat maneuvers. The article wraps up with an evaluation of the design
and ideas for further application of hierarchical plan-space planning.

13.1	 Introduction
13.2	 Planning	for	Multiple	Units
13.3	 Hierarchical	Planning	

in	Plan-Space:	
The Ingredients

13.4	 Planner	Main	Loop:	
An A*	Search	through	
Plan-Space

13.5	 A	Plan	of	Tasks
13.6	 Planner	Methods
13.7	 Plan-Space
13.8	 Making	Planning	

More Efficient
13.9	 Conclusion
13.10	Future	Work

170 Part II. Architecture

13.2	 	Planning	for	Multiple	Units

Creating a plan for multiple units is different from planning for a single unit. Obviously,
the plan needs to cater to all the units instead of a single unit, and will involve more
actions. In many cases, these units will perform their actions concurrently.

But there is more to it: in most cases, these units will have to interact with each other
to accomplish the goal. To coordinate this interaction, the plan needs to tell who needs to
interact with whom, where, and at what time.

Another difference is in communication of the plan: the actions making up a single
unit’s plan typically require no additional explanation. However, when multiple units work
together towards an objective, additional explanation is often expected (for example, as
part of the briefing in Figure 13.1). How is the work split across subgroups? Who is assisting
whom? What is each group’s role? And for combat plans, what is the overall concept?

Given these differences, can we take a single-unit planner such as GOAP [Orkin 06] or
an HTN planner [Ghallab et al. 04, Humphreys 13] and create plans for multiple units?
For all practical purposes, we cannot. Both these kinds of planners construct their plan
action for action, and traverse a search space consisting of world states (the state-space
[StateSpaceSearch]). Our problem is the enormous state-space resulting from multiple
units acting concurrently. For example, assume a single unit has four alternative actions
to move about or manipulate its environment, and we are in need of a five-step plan. For
this “single unit” case, the total state-space consists of 45 = 1024 states, and can easily be
searched. If we attempt to tackle a similar problem involving six units acting concur-
rently, the state-space size explodes to (46)5 ~ 1.15 1018 combinations. GOAP and, to a lesser
extent, standard HTN planners struggle to search efficiently in such a large state-space.

“Our plan:
We’ll clear objective Z, with A, B, C,
D and E platoons forming up and
launching a two pronged simultaneous
attack. Afterwards, we’ll regroup at
objective Z.
B platoon will transport A and C to
their form up areas. A and C platoons
will attack across the northern
bridge, D and E platoons will attack
across the southern bridge.
Fire support is provided by batteries
H and J and gunships W. Batteries H
and J will fire smoke screens to
cover the bridge crossings. W flight
will be on call.”

A

A

B

C

H
D

EW

J

Z

Figure	13.1

A	multi-unit	planning	problem	(left)	and	the	result	(right)	as	briefed	to	the	player.

17113. Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

Instead of searching in state-space, we can attempt to search in plan-space (see Figure 13.2).
Plan-space represents all incomplete and complete plans. This may sound vague, but it
actually is quite similar to how human project planners tackle planning problems. Project
planners break down the overall problem into smaller tasks that together accomplish the
goal. They then repeatedly break down these smaller tasks until the resulting activities are
small enough to be accomplished by a single unit’s action. See Figure 13.3 for an example
of a fully detailed plan.

Working in plan-space offers three key advantages when tackling multiunit planning
problems. First, we can make planning decisions at a higher level than individual actions
by reasoning about tasks and subtasks. Second, we have the freedom to detail the plan in
any order we like, which allows us to start focusing on the most critical tasks first. And,
third, we can explicitly represent coordination (as tasks involving multiple units), and
synchronization (as tasks not able to start before all actions of a preceding subtask have
completed) in our plan. With these advantages, we are able to generate plans describing
coordinated actions for multiple units even for a large search space.

Goal Task

searching in state-space

searching in plan-space

Sub Task 1

Task 1.2

Action A Action B Action D

Action Q

Action V

Action J

Action R

Action A Action B

Action K

Action S

Action J

Action R

unit A

unit B

unit C

unit A

unit B

unit C

?

?

?

?

?

?

Task 1.2

Sub Task 2

initial state state 1 state 2 ... state n ... goal state

Sub Task 3

?

?

?

?

Figure	13.2

State-space	search	(top)	compared	with	plan-space	search	(bottom).

172 Part II. Architecture

This article continues by detailing this approach of hierarchical plan-space planning
for a combat maneuver problem as illustrated in Figure 13.1.

13.3	 	Hierarchical	Planning	in	Plan-Space:	The	Ingredients

We need four ingredients to implement hierarchical planning in plan-space: a planner
main loop, the tasks and actions to represent the plan, a set of planner methods which can
refine a partial plan by detailing one task in that plan, and finally the plan-space that holds
and ranks all partial plans. We will look into these ingredients in this order.

13.4	 	Planner	Main	Loop:	An	A*	Search	through	Plan-Space

The planner main loop executes the search through plan-space. The search starts with a
single plan consisting of a single top-level task (the “mission”). Next, the main loop repeat-
edly picks the most promising plan from the open plans in plan-space and attempts to
expand that plan by refining the plan’s tasks. The main loop exits successfully when a plan
is found that is complete. The main loop exits with a failure when there is no open plan left
to be expanded. Figure 13.4 shows the pseudocode for the planner main loop.

The main loop expands a selected plan as follows. It first picks a single task requiring
refinement from the plan. It then selects from the catalog of planner methods the methods
that can refine this selected task. Each of these methods is applied separately, resulting in
zero or more alternative expanded plans (we will discuss this in more detail later). Every
expanded alternative plan is assigned a cost and added to the open list.

The main loop is quite generic and similar to an A* path search. Here, we are expand-
ing plans into one or more neighboring plans which are closer to a fully detailed plan,
instead of expanding paths into one or more neighboring locations which are closer to the
destination. We are expanding plans in a best-first approach, something that is explained
in more detail when looking into the plan-space.

Mission [ABC]

Move [ABC]

Transported Move [BC]

Move [A]

Move [C] Load [C-B] Move [C] Unload [C-B] Hide [C] Wait [C] Move [C]

Mount [B-C] Ride [B] Dismount [B-C] Move [B] Attack [B] Move [B]

Move [A] Attack [A]

Formation Attack [AC]

Move [A]

Form Up [ABC] Attack [ABC] Regroup [ABC]

Clear Objective [ABC]

time

unit A

unit B

unit C

team

tactics

units

mission

objective

Figure	13.3

A	complete	plan	with	higher	level	tasks	(top)	and	resulting	unit	actions	(bottom).

17313. Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

13.5	 	A	Plan	of	Tasks

A plan consists of interdependent tasks. A task represents an activity for one or more units
and consumes time. For our combat maneuver domain, we need tasks to represent basic
unit actions, and we need tasks to represent higher level activity. Table 13.1 lists examples
of both types of tasks, with unit level tasks in the bottom row. The scope reflects the vari-
ous levels at which decisions are made and problems are broken down in the military:
mission, objective, team, tactics, units, unit.

The basic unit tasks simply follow from the activity that a unit—such as an infantry
squad, a tank platoon, or a gunship section—is capable of. We call these tasks “primitive ”
since we cannot decompose them. The higher level tasks are intended to help us make
higher level planning decisions and break down the plan (as shown in Figure 13.3).
In general , these tasks are about assigning resources to subgoals and coordinating sub-
tasks. Concrete examples for our combat maneuver domain include a complete team
 moving to a form-up position, preparatory strikes by artillery and aircraft, or a para drop.
These tasks are called “compound” since we can break them down into smaller tasks.

Tasks have a start time and duration. A task’s duration is computed as the activity
duration for primitive tasks, as the latest subtask’s end-time minus earliest subtask’s start-
time for tasks already refined into subtasks, and as an estimated duration for a compound
tasks not yet refined. We’ll look into these estimates later.

In the plan, the tasks are organized as a graph. Every task has a parent except for the
root task. Compound tasks have children (subtasks implementing their parent). Tasks

Table 13.1	 Examples of tasks for combat maneuver domain, arranged by scope

Scope Task examples

Mission Mission
Objective Clear, occupy, defend
Team Move, form up, attack, air land, defend, counter-attack, para drop
Tactic Formation ground attack, planned fire support, smoke screen
Units Transported move, defend sector
Unit Defend, guard, attack, hide, move, wait, air ingress, air egress, mount, dismount, load, unload, ride,

para jump, fire artillery mission, close air support

Figure	13.4

Pseudocode	for	the	planner	main	loop.

174 Part II. Architecture

may have preceding tasks which require completion before the task can start. For example,
a team formation attack won’t be able to start until all the form-up tasks of all involved
units have been completed. These precedence relations between two tasks also imply all
of the first task’s subtasks precede the second task. Tasks may have successor tasks in the
same way.

Tasks are parameterized with inputs and may provide outputs. In our combat maneuver
domain all tasks take the units involved as input, typically with the units in the planned
state (position, ammo level) at the start of the task. Primitive tasks deal with one single unit;
compound tasks typically take an array of units. Many tasks take additional inputs—for
example, to denote cooperating units, assigned targets or zones, or target states (in unit
positions at the end of the task).

Figure 13.5 shows an example of two kinds of tasks, each taking inputs. The LoadTask
represents the loading activity by a transporter unit such as an APC platoon. The LoadTask
takes three inputs. The start-state input identifies the transporter unit and its initial state
consisting of its position, and identifiers for any passenger units already being mounted.
The target-state input is similar to the start-state but with the indicated passenger unit
mounted. The passenger input identifies the passenger unit.

The AttackAfterFormUpTeamTask represents a multi-unit ground attack from a form-
up position. It takes three inputs. The start-state input takes an array of units that will
execute the attack. The objective input and avenue-of-approach inputs provide additional
guidance from “higher up” on how to refine this team level task.

The AttackAfterFormUpTeamTask also provides outputs, as do many other tasks. The
purpose of an output is to provide values to other tasks’ inputs, enabling them to work
from a resulting unit state, or from a tactical decision such as an avenue of approach.

A task input need not be set on task creation. It may be left open until the task is being
refined. Or it can be connected to the input or output of another task and receive a value
when the other side of the connection is set. Figure 13.6 illustrates this.

Figure	13.5

Two	examples	of	tasks,	with	inputs	and	outputs.

17513. Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

In Figure 13.6, a TeamFormationAttack task has been created involving tank platoons
A and C. The task is given a start-state consisting of the A and C units with their start posi-
tions. The task’s target-state indicates the tank platoons should move into positions at the
far end of objective Z. The TeamFormationAttack’s end-state output is left open intention-
ally, leaving detailed positioning of the tank platoons to more specialized subtasks. When
the planner refines the TeamFormationAttack—for example, by adding two UnitAttack
tasks, it connects the UnitAttack’s end-state outputs to the TeamFormationAttack end-state
output. When the planner refines the UnitAttacks, it will set the end-states with values
representing positions close to the desired target-state but outside the woods. As soon as
these UnitAttack’s end-states are set, they will propagate to the TeamFormationAttack’s
end-state (and propagate further, if other inputs have been connected to that end-state).

Task outputs thus serve to pass on planning decisions and states along and up the
chain of tasks. Connections between outputs and inputs determine how tasks share
values. Connections can link inputs and outputs as a whole, but also (for arrays) on a
per-element basis. In Figure 13.6, each of the UnitAttack tasks sets an element in the
TeamFormationAttack’s end-state.

We call task inputs that have all their values set “grounded” tasks. “Ungrounded”
tasks lack one or more values in their inputs. We will revisit this distinction when dis-
cussing the order in which tasks are being refined.

13.6	 	Planner	Methods

When the planner wants to refine a task in a partial plan, it selects the planner methods
that apply to this task. It then applies each of these planner methods separately on a clone
of the partial plan, and has the planner method generating alternative and more refined
versions of the partial plan.

 Team Formation Attack - AC
inputs: outputs:
 objective: Z end state: [???, ???]
 start state: [A@(5,1), C@(7,3)]
 target state: [A@(2,4), C@(3,6)]

 Team Formation Attack - AC
inputs: outputs:
 objective: Z end state: [A@(1,5), C@(2,6)]
 start state: [A@(5,1), C@(7,3)]
 target state: [A@(2,4), C@(3,6)]

 Unit Attack - A
inputs: outputs:
 start state: A@(5,1) end state: A@(1,5)
 target state: A@(2,4)

 Unit Attack - C
inputs: outputs:
 start state: C@(7,3) end state: C@(2,6)
 target state: C@(3,6)

Refine the A and C Team Formation Attack task,
using the A and C Unit Attack task end states to
determine the Team Formation Attack’s end state.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

A

A

Z

C

C

Figure	13.6

A	parent’s	task	output	being	determined	by	child	tasks.

176 Part II. Architecture

The role of the planner methods (we’ll refer to them simply as “methods” from now on)
is to refine a specific task in the plan. Methods themselves indicate which task or tasks they
are able to refine. If the task to be refined is a primitive task, the method should compute
and set this task’s outputs. Figure 13.6 shows how the tank platoon’s UnitAttack is given
an output (a destination position outside the woods at the far end of the objective) that
matches the tank unit’s movement capabilities.

If the task to be refined is a compound task, then the method’s responsibility is to decide
how to implement that task, create the necessary subtasks, and connect the inputs and
outputs of the task and subtasks. The method should ensure the outputs of the task being
refined are set or have connections into them. Figure 13.7 illustrates an example of the deci-
sions to be made, and the tasks, relations, and input/output connections to be created by a
TransportedMove method in order to refine a nontrivial TransportedMove task.

To break down a TransportedMove task for a truck platoon C and two infantry squads
A and B (in Figure 13.7), the TransportedMove method first makes a number of decisions.
The method selects positions for the truck platoon to pick up squads A and B. Such a pick-
up position needs to be accessible for the truck platoon and preferably close to the infantry
squad. If the infantry squad had been in the open, the truck platoon might have picked
it up at the squads’ initial position. In this example, however, the infantry is positioned
in the woods and needs to move into the open in order to be picked up. The drop-off
point near form-up area X is picked in a similar way. The third decision is about picking
up A before B or the other way around. Based on a few path-finding queries, picking up
A before B is chosen. The final decision involves picking final positions for A, B, and C
if not already given.

C

B

A

X

Transported Move [BC]

Move [A]

Move [B]

Move [C] Unload [C,A,B]

Dismount [B,C]

Dismount [A,C]Mount [A,C]

Mount [B,C] Ride [B,C]

Load [C,B]Load [C,A] Move [C] Move [C]

Ride [A,C]

Move [B]

Move [A]

Move [C]

�e task is for truck platoon C to pick up
infantry squads A and B, and transport
them to form-up area X. �ere A and B
are to dismount, and all are to move to
their target positions.

�is requires decisions on:
– where to pick up A, and where B
– whether to pick up A before B
– where to drop off A and B
– exact final positions for A, B and C

Figure	13.7

Decisions	and	subtasks	when	refining	a	TransportedMove	task.

17713. Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

Based on these decisions, the TransportedMove method can create the tasks for the two
infantry squads and truck platoon. By making one task a predecessor of the other task,
the method creates a sequence of tasks for each of the units. In addition, it synchronizes
the load/mount actions and the unload/dismount actions by also making specific actions
from other units a predecessor of these tasks. For example, the action for C to load A
cannot start before both C and A have completed their moves to the pick-up position.
Similarly, the infantry squads cannot disembark before the truck platoon has arrived at
the drop-off position.

Since the TransportedMove method in this example already makes most of the deci-
sions for all units and tasks involved, it can simply set output values and input values for
most of the tasks.

To fully cover our combat maneuver domain, we need methods to set end-states for
each of the primitive unit tasks, and we need methods to break down each of the com-
pound tasks. For breaking down compound tasks into smaller tasks, we mirror the hier-
archy chosen for tasks, from mission level methods down to unit level methods. As a rule
of thumb, methods break down tasks into tasks of the next level, sometimes one level
more. At each level, the methods have slightly different responsibility, as is illustrated in
Table 13.2.

For most tasks, there will be a single corresponding method that is able to break the task
down. For a few tasks it makes sense to have multiple methods for refining the task, each
specialized in one type of tactical approach. To defend an objective, one method would
create subtasks that make the available platoons each occupy a static position around the
objective. Another method could create subtasks that have infantry platoons defending
from static positions and keeping armor platoons in the rear for a counter-attack.

One benefit of using separate methods implementing different tactics is the ability
to configure the planner’s tactical approach (doctrine) by enabling or disabling certain
methods for planning.

In the example of Figure 13.7, the TransportedMove method was able to consider two
combinations (picking up A before B, and B before A) and pick the optimal one, because
it understood how the task would be implemented in terms of primitive tasks. Methods
working with higher level tasks often lack the understanding of how the plan will work
out in detail, and have troubles make an optimal (or even “good enough”) choice by
themselves when facing multiple combinations. In these cases, the method will indi-
cate to the planner main loop that it sees more than one alternative to refine the plan.
The planner main loop then will iterate over these alternatives and create new plans by
cloning the parent plan and asking the method to refine the plan for the given alternative

Table 13.2	 Examples of planner methods and their responsibilities, arranged by scope

Scope Planner method responsibility

Mission Arrange objectives, allocate units to objectives
Objective Define team activities, assign combat units and support units to teams
Team Execute tasks as a team, distributing the work according to roles
Tactic Synchronize tactical activity between multiple units
Units Arrange cooperation between complementary units
Unit Define end-state

178 Part II. Architecture

(see Figure 13.4). Although this adds a little complexity to the planner main loop, the
benefit is for us developers having to write and maintain just a single method to break
down a specific compound task.

A method may fail to set a task output or break down a compound task and not gener-
ate a more refined plan. For example, if an artillery unit has already spent all its rounds
in two artillery missions early in the plan, it should not be planned to perform a third
 artillery mission. If a team of three mechanized platoons is tasked to attack in forma-
tion but has to cross a narrow bridge doing so, it won’t be an attack in formation and the
method should not refine the task.

When one method fails to refine a task, this is only a local dead end in planning if
no other method is capable of refining the same task in the same plan. Remember that
we’re searching through alternative plans with A*: a dead end here doesn’t mean there isn’t
another, perhaps very different, variant of a plan that is feasible.

13.7	 	Plan-Space

The plan-space is the collection of all generated (partial) plans. We keep track of all
plans that can be further refined in an open list. The open list is sorted for the lowest cost
(Figure 13.8).

We can choose what to use for costs: plan duration works in most cases and is par-
ticularly suited for combat maneuvers, where time plays a considerable role in the plan’s
quality. The quicker we launch an attack, or the quicker our defending units occupy their
positions, the better.

We compute a plan’s duration the way project planners do, using accurate data from
primitive tasks when available and using estimates for compound tasks that have not been
detailed yet. Starting at the root task, we repeatedly pick a child task that has no preced-
ing tasks without a start-time and end-time. For this child task we set as the start-time
the maximum end-time of its predecessors, and recursively compute its duration and
end-time (start-time plus duration). After doing so for all children, we can set the task’s
end-time. The root task’s end-time minus start-time gives us the plan’s duration.

We need to recompute a plan’s duration every time we update the plan. Newly added prim-
itive tasks may have a duration different from what their compound parent task estimated.
We can, however, cache a compound task’s estimate once computed for its specific inputs.

We leave the estimation of a compound task’s duration to the task itself. Each com-
pound task should implement an “estimate duration” function. These functions use
heuristics to come up with a decent estimate. Since we are using A* to search through
plan-space, the estimate should be a close estimate without overestimating the duration.
Figure 13.9 illustrates how to come up with a good estimate.

Figure 13.9 shows the same situation and TransportedMove task as Figure 13.7. Now we
are interested in estimating the duration without going into all the decisions and details
that we considered when refining the task. A good estimate would be for C to move to A,
then to B and finally to X at its top speed, with time for loading and unloading A and B
added. In the estimate, we can decide to move to A before B based on a simple geometric
comparison: A is closer to C than is B. Alternatively, we can evaluate path durations for
both cases, and pick the lowest estimate. We are underestimating the real costs in most
situations, since actual movement will be slower than C due to the terrain.

17913. Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

Mission [ABC]

Clear Objective [ABC]

Move [ABC]

Move [A]

Transported Move [BC]

Form Up [ABC] Attack [ABC] Regroup [ABC]

Mission [ABC]

Clear Objective [ABC]

Move [ABC]

Move [A]

Move [B]
Move [C]

Form Up [ABC] Attack [ABC] Regroup [ABC]

Mission [ABC]

Clear Objective [ABC]

Mission [ABC]

Clear Objective [ABC]

Move [ABC] Form Up [ABC] Attack [ABC] Regroup [ABC]

Mission [ABC]

Clear Objective [ABC]

Move [ABC] Attack [ABC] Regroup [ABC]

plan 1.1.1.1

plan 1.1.1.2

cost: 104.0

plan 1.1.1 cost: 95.0

plan 1.1 cost: 90.0

plan 1.1.2 cost: 125.0

cost: 119.0

refine
Clear Objective

into two
alternative plans

refine lowest-cost plan first:
two alternative plans to move
units A, B and C

 alternatives

refinement

Figure	13.8

Plan-space,	with	incomplete	plans	as	nodes	and	links	representing	refinement.

Cost (under) estimate for:
Transported Move (A,B,C) to X:
 Path duration (C, A) +
 Path duration (A, B) +
 Path duration (B, X) +
 2 × load time +
 1 × unload time,
 while assuming transport C
 moves at maximum speed

C

A

B

X

Figure	13.9

Estimating	the	duration	of	a	compound	TransportedMove	task.

180 Part II. Architecture

As with A* pathfinding, we make the planner avoid certain tasks and plans by arti-
ficially inflating the duration of risky actions. For example, to make the attacker avoid
using soft-skinned vehicles to transport infantry to the form-up location, we can raise the
duration of the move task for soft-skinned trucks. When the planner also has available
armored personnel carriers, he will be more likely to use these to transport infantry.

For tasks that are required for the plan, but not relevant for the quality of the plan,
we may want to artificially deflate the duration. For example, for combat maneuvers,
we typically don’t have any use for transport helicopters after they have inserted their
 airborne infantry at a landing zone. We don’t want their return flight duration to mask any
duration differences in the tasks for the infantry’s ground attack. To ignore the irrelevant
return flight, we can use a small and fixed duration for the return flight tasks.

13.8	 	Making	Planning	More	Efficient

As mentioned earlier, the biggest risk we run when creating plans for multiple units is the
combinatorics problem (better known as the combinatorial explosion). Our hierarchical
plan-space planner gives us several ways to reduce the number of options we consider,
making planning for multiple units feasible and efficient.

First, we are using an A* search through plan-space expanding the lowest-cost “best”
plan first. This helps us considering fewer options than a depth-first backtracking approach
used by standard HTN planners.

Second, we are able to control the way an individual plan is expanded, and turn this
into a “high-level decisions first” approach. In most cases, a plan will have more than one
task that requires refinements and is grounded (has all its inputs set). The planner main
loop in Figure 13.3 needs to pick a single task to refine. For the combat maneuver domain,
where each task is associated with a command scope, we can have the planner main loop
always pick the task with the highest scope as the task to refine first.

In Figure 13.10, this highest scope first task selection is illustrated. The partial plan
consists of many compound tasks requiring refinement. Some of these, such as the Attack
and Regroup tasks, cannot be refined yet, since they need inputs from preceding tasks.

Mission [ABC]

Move [ABC]

Transported Move [BC]

compound task,
needs refining,
all inputs set,
scope = units

compound task,
needs refining,
all inputs set,
scope = team

compound task,
needs refining,
some inputs not set

task scope

Move [A]

Form Up [ABC] Attack [ABC] Regroup [ABC]

Clear Objective [ABC]

mission

objective

team

units

unit

Figure	13.10

Selecting	the	highest	scope	task	with	all	inputs	set:	FormUp.

18113. Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

Two tasks are grounded and ready to be refined: the TransportedMove, with “units” scope,
and the FormUp, with “team” scope. Since “team” scope is higher, the planner will pick the
FormUp task as the task to be refined first. Refining the FormUp task will set the inputs for
the Regroup task, allowing that task to be refined next.

The benefit of refining higher level tasks first is that these tasks have larger impact on
plan feasibility (do we have the maneuvering space for a combined attack by all our mech-
anized platoons?) and the cost of the plan. The planner should not busy himself detailing
seating arrangements for the move to the form-up position before the attack is fleshed out.
By making high-level decisions first, the planner needs far fewer steps to find a good plan.

A third way to consider fewer plans is the hierarchical plan-space planner’s ability to
plan from the “middle-out.” In the military, planning specialists mix forward planning and
reverse planning, sometimes starting with the critical step in the middle. When starting in
the middle (for example, with the air landing or a complex attack), they sub sequently plan
forward to mission completion and backward to mission start. The military do so because
starting with the critical step drastically reduces the number of planning options to consider.

We can mimic this by changing the input/output relations between tasks, and shifting
some decisions from one method to another. Keep in mind that the only tasks that can be
refined are the grounded tasks. Figure 13.11 shows an example of tasks connected to enable
middle-out planning.

In Figure 13.11, a ClearObjective task is shown that has been broken down into a Move,
a FormUp, an AttackAfterFormUp, and a Regroup. These tasks are to be executed in that
order. However, refinement of these tasks should start with the AttackAfterFormUp.
The input/output connections between the tasks are made in such a way that the
AttackAfterFormUp is the first task having all its inputs set. The FormUp and Regroup task
inputs depend on outputs from the AttackAfterFormUp task. The Move task depends on
outputs from the FormUp task. The method refining the AttackAfterFormUp task has been

 Clear Objective
i: start_state end_state :o
i: objective
i: threat_intel

 Attack After Form Up
i: start_state
i: objective
i: approach

 Form Up
i: form_up_area end_state :o
i: target_state arrival_state :o

 Move
i: start_state end_state :o
i: target_state

 Regroup
i: start_state
 end_state :o

end_state :o
objective_area :o
form_up_area :o

formed_up_state :o

Figure	13.11

Middle-out	planning	from	the	AttackAfterFormUp	by	linking	inputs.

182 Part II. Architecture

modified to work with initial unit positions and the objective, and defines the attack move
from the form-up locations through the objective. The AttackAfterFormUp task outputs
the chosen form-up location and the positions of the involved units after form-up. It also
outputs the positions of the units after attacking through the objective. These outputs
enable the FormUp and Regroup tasks to be refined. The method refining the FormUp task
defines where the units should enter the form-up area and with that output enables the
Move task to be refined.

Middle-out planning requires changes to tasks and methods but it can greatly reduce
the number of plans to consider by making critical decisions first. For combat maneuvers,
middle-out planning also resembles a military practice, which makes it easier to translate
military doctrine into tasks and planner methods.

13.9	 	Conclusion

We are able to successfully plan combat maneuvers involving over a dozen mechanized
platoons, armor troops, gunship sections, and artillery batteries, taking into account
tactical preferences and time. By working in plan-space instead of state-space, by break-
ing down the problem into high-level and low-level tasks and decisions, and by using a
cost-based best-first search that expands high-level tasks first, we can avoid combinatorial
explosion and deliver a good plan on short notice. The resulting plan includes not only
the actions for each individual unit, but also the relations between these actions for coor-
dination, and all higher level decisions. Turning such a plan into human understandable
explanation or briefing is trivial.

The planner’s design described here has been in action since mid-2009, generat-
ing tens of thousands of combat maneuvers from user input as downloadable missions
[PlannedAssault 09]. The current implementation is in Ruby, running single-threaded on
a Java VM (through JRuby) on an Intel Core2Quad Q8400, taking some 10s to 30s to
generate a maneuver for 4 × 3 km terrain, with the majority of CPU time spent on terrain
analysis and path-finding, not on plan expansion. The majority of plans are constructed
in fewer than 200 planner main loop iterations.

13.10	 	Future	Work

One nice side effect of planning in plan-space is the availability of all higher level tasks and
decisions in the resulting plan, next to the actions for each of the units. Not only does this
availability make it easier to turn the plan into a human readable briefing, it also makes
the resulting plan great for use in monitoring the plan’s execution. The original plan con-
tains all the information to decide who is impacted by a task running late, which part
of the plan needs repairs, and what the maximum allowed duration is for an alternative
implementation of a plan part.

References

[Ghallab et al. 04] M. Ghallab, D. Nau, and P. Traverso. Automated Planning, Theory and
Practice, pp. 229–259. San Francisco, CA: Morgan Kaufmann, 2004.

18313. Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

[Humphreys 13] T. Humphreys. “Exploring HTN planners through example.” In Game AI
Pro, edited by Steve Rabin. Boca Raton, FL: CRC Press, 2013.

[Orkin 06] J. Orkin. “Three states and a plan: The A.I. of F.E.A.R.” Game Developers
Conference, 2006. Available online (http://web.media.mit.edu/~jorkin/goap.html).

[PlannedAssault 09] PlannedAssault on-line mission generator for ARMA/ARMA2 games,
http://www.plannedassault.com, 2009.

[StateSpaceSearch] Wikipedia. http://en.wikipedia.org/wiki/State_space_search.

