
169

Hierarchical Plan-Space Planning
for Multi-unit Combat Maneuvers
William van der Sterren

13

13.1 � Introduction

In combat simulators and war games, coming up with a good plan is half the battle. Good
plans make the AI a more convincing opponent and a more reliable assistant commander.
Good plans are essential for clear and effective coordination between combat units toward
a joint objective.

This chapter describes the design of an AI planner capable of producing plans that
coordinate multiple units into a joint maneuver on the battlefield. First, it looks at how
planning for multiple units is different from planning for a single unit. Then it introduces
the basic ideas of hierarchical plan-space planning. These ideas are made more concrete
for the case of combat maneuvers. The article wraps up with an evaluation of the design
and ideas for further application of hierarchical plan-space planning.

13.1	 Introduction
13.2	 Planning for Multiple Units
13.3	 Hierarchical Planning

in Plan-Space:
The Ingredients

13.4	 Planner Main Loop:
An A* Search through
Plan-Space

13.5	 A Plan of Tasks
13.6	 Planner Methods
13.7	 Plan-Space
13.8	 Making Planning

More Efficient
13.9	 Conclusion
13.10	Future Work

170 Part II.  Architecture

13.2 � Planning for Multiple Units

Creating a plan for multiple units is different from planning for a single unit. Obviously,
the plan needs to cater to all the units instead of a single unit, and will involve more
actions. In many cases, these units will perform their actions concurrently.

But there is more to it: in most cases, these units will have to interact with each other
to accomplish the goal. To coordinate this interaction, the plan needs to tell who needs to
interact with whom, where, and at what time.

Another difference is in communication of the plan: the actions making up a single
unit’s plan typically require no additional explanation. However, when multiple units work
together towards an objective, additional explanation is often expected (for example, as
part of the briefing in Figure 13.1). How is the work split across subgroups? Who is assisting
whom? What is each group’s role? And for combat plans, what is the overall concept?

Given these differences, can we take a single-unit planner such as GOAP [Orkin 06] or
an HTN planner [Ghallab et al. 04, Humphreys 13] and create plans for multiple units?
For all practical purposes, we cannot. Both these kinds of planners construct their plan
action for action, and traverse a search space consisting of world states (the state-space
[StateSpaceSearch]). Our problem is the enormous state-space resulting from multiple
units acting concurrently. For example, assume a single unit has four alternative actions
to move about or manipulate its environment, and we are in need of a five-step plan. For
this “single unit” case, the total state-space consists of 45 = 1024 states, and can easily be
searched. If we attempt to tackle a similar problem involving six units acting concur-
rently, the state-space size explodes to (46)5 ~ 1.15 1018 combinations. GOAP and, to a lesser
extent, standard HTN planners struggle to search efficiently in such a large state-space.

“Our plan:
We’ll clear objective Z, with A, B, C,
D and E platoons forming up and
launching a two pronged simultaneous
attack. Afterwards, we’ll regroup at
objective Z.
B platoon will transport A and C to
their form up areas. A and C platoons
will attack across the northern
bridge, D and E platoons will attack
across the southern bridge.
Fire support is provided by batteries
H and J and gunships W. Batteries H
and J will fire smoke screens to
cover the bridge crossings. W flight
will be on call.”

A

A

B

C

H
D

EW

J

Z

Figure 13.1

A multi-unit planning problem (left) and the result (right) as briefed to the player.

17113.  Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

Instead of searching in state-space, we can attempt to search in plan-space (see Figure 13.2).
Plan-space represents all incomplete and complete plans. This may sound vague, but it
actually is quite similar to how human project planners tackle planning problems. Project
planners break down the overall problem into smaller tasks that together accomplish the
goal. They then repeatedly break down these smaller tasks until the resulting activities are
small enough to be accomplished by a single unit’s action. See Figure 13.3 for an example
of a fully detailed plan.

Working in plan-space offers three key advantages when tackling multiunit planning
problems. First, we can make planning decisions at a higher level than individual actions
by reasoning about tasks and subtasks. Second, we have the freedom to detail the plan in
any order we like, which allows us to start focusing on the most critical tasks first. And,
third, we can explicitly represent coordination (as tasks involving multiple units), and
synchronization (as tasks not able to start before all actions of a preceding subtask have
completed) in our plan. With these advantages, we are able to generate plans describing
coordinated actions for multiple units even for a large search space.

Goal Task

searching in state-space

searching in plan-space

Sub Task 1

Task 1.2

Action A Action B Action D

Action Q

Action V

Action J

Action R

Action A Action B

Action K

Action S

Action J

Action R

unit A

unit B

unit C

unit A

unit B

unit C

?

?

?

?

?

?

Task 1.2

Sub Task 2

initial state state 1 state 2 ... state n ... goal state

Sub Task 3

?

?

?

?

Figure 13.2

State-space search (top) compared with plan-space search (bottom).

172 Part II.  Architecture

This article continues by detailing this approach of hierarchical plan-space planning
for a combat maneuver problem as illustrated in Figure 13.1.

13.3 � Hierarchical Planning in Plan-Space: The Ingredients

We need four ingredients to implement hierarchical planning in plan-space: a planner
main loop, the tasks and actions to represent the plan, a set of planner methods which can
refine a partial plan by detailing one task in that plan, and finally the plan-space that holds
and ranks all partial plans. We will look into these ingredients in this order.

13.4 � Planner Main Loop: An A* Search through Plan-Space

The planner main loop executes the search through plan-space. The search starts with a
single plan consisting of a single top-level task (the “mission”). Next, the main loop repeat-
edly picks the most promising plan from the open plans in plan-space and attempts to
expand that plan by refining the plan’s tasks. The main loop exits successfully when a plan
is found that is complete. The main loop exits with a failure when there is no open plan left
to be expanded. Figure 13.4 shows the pseudocode for the planner main loop.

The main loop expands a selected plan as follows. It first picks a single task requiring
refinement from the plan. It then selects from the catalog of planner methods the methods
that can refine this selected task. Each of these methods is applied separately, resulting in
zero or more alternative expanded plans (we will discuss this in more detail later). Every
expanded alternative plan is assigned a cost and added to the open list.

The main loop is quite generic and similar to an A* path search. Here, we are expand-
ing plans into one or more neighboring plans which are closer to a fully detailed plan,
instead of expanding paths into one or more neighboring locations which are closer to the
destination. We are expanding plans in a best-first approach, something that is explained
in more detail when looking into the plan-space.

Mission [ABC]

Move [ABC]

Transported Move [BC]

Move [A]

Move [C] Load [C-B] Move [C] Unload [C-B] Hide [C] Wait [C] Move [C]

Mount [B-C] Ride [B] Dismount [B-C] Move [B] Attack [B] Move [B]

Move [A] Attack [A]

Formation Attack [AC]

Move [A]

Form Up [ABC] Attack [ABC] Regroup [ABC]

Clear Objective [ABC]

time

unit A

unit B

unit C

team

tactics

units

mission

objective

Figure 13.3

A complete plan with higher level tasks (top) and resulting unit actions (bottom).

17313.  Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

13.5 � A Plan of Tasks

A plan consists of interdependent tasks. A task represents an activity for one or more units
and consumes time. For our combat maneuver domain, we need tasks to represent basic
unit actions, and we need tasks to represent higher level activity. Table 13.1 lists examples
of both types of tasks, with unit level tasks in the bottom row. The scope reflects the vari-
ous levels at which decisions are made and problems are broken down in the military:
mission, objective, team, tactics, units, unit.

The basic unit tasks simply follow from the activity that a unit—such as an infantry
squad, a tank platoon, or a gunship section—is capable of. We call these tasks “primitive”
since we cannot decompose them. The higher level tasks are intended to help us make
higher level planning decisions and break down the plan (as shown in Figure 13.3).
In general, these tasks are about assigning resources to subgoals and coordinating sub-
tasks. Concrete examples for our combat maneuver domain include a complete team
moving to a form-up position, preparatory strikes by artillery and aircraft, or a para drop.
These tasks are called “compound” since we can break them down into smaller tasks.

Tasks have a start time and duration. A task’s duration is computed as the activity
duration for primitive tasks, as the latest subtask’s end-time minus earliest subtask’s start-
time for tasks already refined into subtasks, and as an estimated duration for a compound
tasks not yet refined. We’ll look into these estimates later.

In the plan, the tasks are organized as a graph. Every task has a parent except for the
root task. Compound tasks have children (subtasks implementing their parent). Tasks

Table 13.1  Examples of tasks for combat maneuver domain, arranged by scope

Scope Task examples

Mission Mission
Objective Clear, occupy, defend
Team Move, form up, attack, air land, defend, counter-attack, para drop
Tactic Formation ground attack, planned fire support, smoke screen
Units Transported move, defend sector
Unit Defend, guard, attack, hide, move, wait, air ingress, air egress, mount, dismount, load, unload, ride,

para jump, fire artillery mission, close air support

Figure 13.4

Pseudocode for the planner main loop.

174 Part II.  Architecture

may have preceding tasks which require completion before the task can start. For example,
a team formation attack won’t be able to start until all the form-up tasks of all involved
units have been completed. These precedence relations between two tasks also imply all
of the first task’s subtasks precede the second task. Tasks may have successor tasks in the
same way.

Tasks are parameterized with inputs and may provide outputs. In our combat maneuver
domain all tasks take the units involved as input, typically with the units in the planned
state (position, ammo level) at the start of the task. Primitive tasks deal with one single unit;
compound tasks typically take an array of units. Many tasks take additional inputs—for
example, to denote cooperating units, assigned targets or zones, or target states (in unit
positions at the end of the task).

Figure 13.5 shows an example of two kinds of tasks, each taking inputs. The LoadTask
represents the loading activity by a transporter unit such as an APC platoon. The LoadTask
takes three inputs. The start-state input identifies the transporter unit and its initial state
consisting of its position, and identifiers for any passenger units already being mounted.
The target-state input is similar to the start-state but with the indicated passenger unit
mounted. The passenger input identifies the passenger unit.

The AttackAfterFormUpTeamTask represents a multi-unit ground attack from a form-
up position. It takes three inputs. The start-state input takes an array of units that will
execute the attack. The objective input and avenue-of-approach inputs provide additional
guidance from “higher up” on how to refine this team level task.

The AttackAfterFormUpTeamTask also provides outputs, as do many other tasks. The
purpose of an output is to provide values to other tasks’ inputs, enabling them to work
from a resulting unit state, or from a tactical decision such as an avenue of approach.

A task input need not be set on task creation. It may be left open until the task is being
refined. Or it can be connected to the input or output of another task and receive a value
when the other side of the connection is set. Figure 13.6 illustrates this.

Figure 13.5

Two examples of tasks, with inputs and outputs.

17513.  Hierarchical Plan-Space Planning for Multi-unit Combat Maneuvers

In Figure 13.6, a TeamFormationAttack task has been created involving tank platoons
A and C. The task is given a start-state consisting of the A and C units with their start posi-
tions. The task’s target-state indicates the tank platoons should move into positions at the
far end of objective Z. The TeamFormationAttack’s end-state output is left open intention-
ally, leaving detailed positioning of the tank platoons to more specialized subtasks. When
the planner refines the TeamFormationAttack—for example, by adding two UnitAttack
tasks, it connects the UnitAttack’s end-state outputs to the TeamFormationAttack end-state
output. When the planner refines the UnitAttacks, it will set the end-states with values
representing positions close to the desired target-state but outside the woods. As soon as
these UnitAttack’s end-states are set, they will propagate to the TeamFormationAttack’s
end-state (and propagate further, if other inputs have been connected to that end-state).

Task outputs thus serve to pass on planning decisions and states along and up the
chain of tasks. Connections between outputs and inputs determine how tasks share
values. Connections can link inputs and outputs as a whole, but also (for arrays) on a
per-element basis. In Figure 13.6, each of the UnitAttack tasks sets an element in the
TeamFormationAttack’s end-state.

We call task inputs that have all their values set “grounded” tasks. “Ungrounded”
tasks lack one or more values in their inputs. We will revisit this distinction when dis-
cussing the order in which tasks are being refined.

13.6 � Planner Methods

When the planner wants to refine a task in a partial plan, it selects the planner methods
that apply to this task. It then applies each of these planner methods separately on a clone
of the partial plan, and has the planner method generating alternative and more refined
versions of the partial plan.

 Team Formation Attack - AC
inputs: outputs:
 objective: Z end state: [???, ???]
 start state: [A@(5,1), C@(7,3)]
 target state: [A@(2,4), C@(3,6)]

 Team Formation Attack - AC
inputs: outputs:
 objective: Z end state: [A@(1,5), C@(2,6)]
 start state: [A@(5,1), C@(7,3)]
 target state: [A@(2,4), C@(3,6)]

 Unit Attack - A
inputs: outputs:
 start state: A@(5,1) end state: A@(1,5)
 target state: A@(2,4)

 Unit Attack - C
inputs: outputs:
 start state: C@(7,3) end state: C@(2,6)
 target state: C@(3,6)

Refine the A and C Team Formation Attack task,
using the A and C Unit Attack task end states to
determine the Team Formation Attack’s end state.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

A

A

Z

C

C

Figure 13.6

A parent’s task output being determined by child tasks.

