
149

Exploring HTN Planners
through Example
Troy Humphreys

12

12.1 � Introduction

As programmers we may find ourselves perpetually looking for that “better solution” to
whatever problems we’ve encountered—better performance, maintainability, or usability.
It’s only after we implement those solutions that we understand some of the nuances that
come with them. Often, these nuances might be the deciding factor in what solution we
go with.

In AI development, a common problem to solve is behavior selection. There are many
solutions to this problem, such as finite-state machines, behavior trees, utility-based selec-
tion, neural networks, and planners. This article aims to explore the nuances of a type of
planner called hierarchical task networks (HTN) by using real world examples that one
can run into during development.

Planning architectures such as HTN take a problem as input and supply a series of steps
that solves it. In HTN terms, the series of steps is called a plan. What makes hierarchical

12.1	 Introduction
12.2	 Building Blocks of HTN
12.3	 Putting Together an

HTN Domain
12.4	 Finding a Plan
12.5	 Running the Plan
12.6	 Using Recursion for

Greater Expressiveness

12.7	 Planning for World State
Changes not Controlled
by Tasks

12.8	 How to Handle Higher
Priority Plans

12.9	 Managing Simultaneous
Behaviors

12.10	Speeding up Planning
with Partial Plans

12.11	Conclusion

150 Part II.  Architecture

task networks unique to other planners is that it allows us to represent the problem as a
very high level task, and through its planning process, recursively breaks this task into
smaller tasks. When this process is completed, we are left with a series of atomic tasks
that represent a plan. Breaking up high level tasks into smaller ones is a very natural way
of solving many sorts of problems. In our case, the problem is simply “figuring out what
to do.” With a high degree of modularity and fast run time execution, HTNs make an
attractive choice as a solution. For those of you that are familiar with behavior trees, these
benefits might also seem familiar. Unlike behavior trees, however, HTN planners can rea-
son about the effects of possible actions. This ability to reason about the future allows HTN
planners to be incredibly expressive in how they describe behavior.

There have been many different systems used for HTN planning [Erol 95]. The system we
will be exploring is the system that we used on Transformers: Fall of Cybertron [HighMoon 12],
which is based on a total-order forward decomposition planner. The following example will
walk through some of the challenges we faced and the benefits we received during develop
ment by using a simplified, fictional example.

For our example, we will use a troll NPC called a “Trunk Thumper.” The designer’s
initial description is that he’s a big, nasty, lumbering troll that patrols its numerous bridges
and attacks passing enemies with a large tree trunk. And just like development in the real
world, this design is bound to change.

12.2 � Building Blocks of HTN

Before building the behavior for our Trunk Thumper, it’s important to go over the basic
building blocks of hierarchical task networks so you can get an idea of how it all works. An
NPC, in our case the Trunk Thumper, has a planner that uses a domain and world state to
build a sequence of tasks called a plan. This plan will be run by the Trunk Thumper’s plan
runner. The world state is updated by the NPC’s sensors and by the successfully completed
tasks executed by the plan runner. A diagram of the system is Figure 12.1.

12.2.1 � The World State
Like any type of behavior algorithm, hierarchical task networks need some type of knowl-
edge representation that describes the current problem space. In the case of our Trunk
Thumper, this would be a representation that describes what our troll knows about the
world and himself in it. Other types of behavior algorithms might query the actual state of
different objects in the world. For example, query an object’s location or their health. But
with HTN, this information needs to be encoded into something it can understand, called
the world state. The world state is essentially a vector of properties that describe what our
HTN is going to reason about. Here is some simple pseudocode.

enum EHtnWorldStateProperties
{
	 WsEnemyRange,
	 WsHealth,
	 WsIsTired,
	 …
}

15112.  Exploring HTN Planners through Example

enum EEnemyRange
{
	 MeleeRange,
	 ViewRange,
	 OutOfRange,
	 …
}
vector<byte> CurrentWorldState;
EEnemyRange currentRange = CurrentWorldState[WsEnemyRange];
CurrentWorldState[WsEnemyRange] = MeleeRange;

As you can see from the pseudocode, world state can simply be an array or vector indexed
by an enum such as EhtnWorldStateProperties. Each entry in the world state can
have its own set of values. In the case of WsIsTired, the byte can represent the Boolean
values zero and one. With WsEnemyRange, the values in the enum EEnemyRange are
used. It’s important to note that the world state only needs to represent what is needed for
the HTN to make decisions. That’s why WsEnemyRange is represented by abstract values,
instead of the actual range. The goal of the world state isn’t to represent every possible state
of every possible object in the game. It only needs to represent the problem space that our
planner needs to make decisions. What this means for our example, of course, is that it
only needs to represent what the Trunk Thumper needs to make decisions.

Task
Task

Task
Task Task

TaskTask

Task
Task Task

TaskTask

Task Task

Task

Task

Task

Task

Task Task Task Task Task

Property Sensor

Sensor

Sensor

Sensor

Sensor

Sensors

Property

Property

Property

Property

Property

Property

Property

World State

Task Task

Current

Plan Runner

Planner HTN Domain

Figure 12.1

Overview of the HTN system.

152 Part II.  Architecture

12.2.2 � Sensors
If you recall, an HTN outputs a plan or sequence of tasks. These tasks will have an effect
on the world state as it is executed. There are outside influences such as the player or other
NPCs, however, that will affect the world state as well. For example, both the enemy and
the troll can affect the world state property, WsEnemyRange. The tasks executed by the
troll could update this property if they were to move the troll. There is nothing in the HTN
planner to handle changes produced by the enemy moving, however.

There are many different ways these changes can be translated into the world state. One
preferable way is a simple sensor system that manages a set of time-sliced sensors. Each
sensor can manage different world state properties. Examples of some different sensors
include vision, hearing, range, and health sensors. These sensors would work the same as
in any other AI system, with an added step of encoding their information into the world
state that our HTN can understand.

12.2.3 � Primitive Tasks
As we mentioned already, a hierarchical task network is made up of tasks. There are two
types of tasks that are used to build a HTN, called compound tasks and primitive tasks.
Primitive tasks represent a single step that can be performed by our NPC. In our Trunk
Thumper example, uprooting a tree or attacking with a trunk slam would be examples of
primitive tasks. A set of primitive tasks is the plan that we are ultimately getting out of
the HTN. Primitive tasks are comprised of an operator and sets of effects and conditions.

In order for a primitive task to execute, its set of conditions must be valid. This allows the
task’s implementer to ensure the correct conditions are met for the task to run. It’s impor-
tant to note that a primitive task’s conditions are not a requirement for the implementa-
tion of HTN. They are, however, recommended to reduce the redundancy of checks that
would be needed higher in the HTN hierarchy. In addition, doing so will avoid potential
bugs that can arrive from having to do these checks in multiple places.

A primitive task’s effects describe how the success of the task will affect the NPC’s
world state. For example, the task DoTrunkSlam executes the troll’s tree trunk melee
attack and results in the troll becoming tired. The DoTrunkSlam’s effects are the manner
in which we describe this result. This allows the HTN to reason about the “future” as was
mentioned earlier. Since the effect of “being tired” is represented, our Trunk Thumper
is able to make a better decision of what to do after DoTrunkSlam or if it’s even worth
doing so at all.

The operator represents an atomic action that a NPC can do. This might sound exactly
like the primitive task itself. The difference being that the primitive task along with its effects
and conditions describe what the operator means in terms of the HTN we are building.

As an example, let’s take the two tasks SprintToEnemy and WalkToNextBridge.
Both of these tasks use the MoveTo operator, but the two tasks change the state of our
NPC in different ways. On the successful completion of SprintToEnemy, our NPC will
be at the enemy and tired, specified by the task’s effects. WalkToNextBridge task’s
effects would set the NPC’s location to the bridge and he’d be a little more bored. As you
can see, we are able to use the same operator but describe two different uses for it in terms
of our network. Here is the notation we will use to describe a primitive task going forward
along with the SprintToEnemy and WalkToNextBridge tasks as an example.

15312.  Exploring HTN Planners through Example

Primitive Task [TaskName(term1, term2,...)]
	 Preconditions [Condition1, Condition2, …]//optional
	 Operator [OperatorName(term1, term2,...)]
		 Effects [WorldState op value, WorldState = value, WorldState += value]//optional
Primitive Task [SprintToEnemy]
	 Preconditions [WsHasEnemy == true]
	 Operator [NavigateTo(EnemyLoc, Speed_Fast)]
		 Effects [WsLocation = EnemyLoc, WsIsTired = true]
Primitive Task [WalkToNextBridge]
	 Operator [NavigateTo(BridgeLoc, Speed_Slow)]
		 Effects [WsLocation = BridgeLoc, WsBored += 1]

12.2.4 � Compound Tasks
Compound tasks are where HTN get their “hierarchical” nature. You can think of com-
pound task as a high level task that has multiple ways of being accomplished. Using the
Trunk Thumper as an example, he may have the task AttackEnemy. Our Thumper may
have different ways of accomplishing this task. If he has access to a tree trunk, he may
run to his target and use it as a melee weapon to “thump” his enemy. If no tree trunks are
available, he can pull large boulders from the ground and toss them at our enemy. He may
have a multitude of other approaches if the conditions are right.

In order to determine which approach we take to accomplish a compound task, we
need to select the right method. Methods are comprised of a set of conditions and tasks.
In order for the method to be the selected approach, the conditions are validated against
the world state. The set of tasks, or subtasks, represent the method’s approach. This subtask
set can be comprised of primitive tasks as well as compound. The ability to put compound
tasks into the methods of other compound tasks is where hierarchical task networks get
their hierarchical nature. Here is an example of the notation we will use to describe a
compound task going forward.

Compound Task [TaskName(term1, term2,...)]
	 Method 0 [Condition1, Condition2,...]
		 Subtasks [task1(term1, term2,...). task2(term1, term2,...),...]
	 Method 1 [Condition1, Condition2,...]
		 Subtasks [task1(term1, term2,...). task2(term1, term2,...),...]

In our previous example, using the tree trunk as a melee weapon and throwing boulders
are both methods to the AttackEnemy compound task. The conditions in which we
decide which method to use depend on whether the troll has a tree trunk or not. Here is an
example of the AttackEnemy task using the notation above.

Compound Task [AttackEnemy]
	 Method 0 [WsHasTreeTrunk == true]
		 Subtasks [NavigateTo(EnemyLoc). DoTrunkSlam()]
	 Method 1 [WsHasTreeTrunk == false]
		 Subtasks [LiftBoulderFromGround(). ThrowBoulderAt(EnemyLoc)]

154 Part II.  Architecture

By understanding how compound tasks work, it’s easy to imagine how we could have a
large hierarchy that may start with a BeTrunkThumper compound task that is broken
down into sets of smaller tasks—each of which are then broken into smaller tasks, and so
on. This is how HTN forms a hierarchy that describes how our troll NPC is going to behave.

It’s important to understand that compound tasks are really just containers for a set
of methods that represent different ways to accomplish some high level task. There is no
compound task code running during plan execution.

12.3 � Putting Together an HTN Domain

Now that we have an overview of the main building blocks of HTN, we can build a simple
domain for our Trunk Thumper to illustrate how it works. A domain is the term used
to describe the entire task hierarchy. As we mentioned before, our troll has numerous
bridges that he actively patrols and attacks enemies with a large tree trunk. We start with
a compound task called BeTrunkThumper. This root task encapsulates the “main idea”
of what it means to be a Trunk Thumper.

Compound Task [BeTrunkThumper]
	 Method [WsCanSeeEnemy == true]
		 Subtasks [NavigateToEnemy(), DoTrunkSlam()]
	 Method [true]
		 Subtasks [ChooseBridgeToCheck(), NavigateToBridge(), CheckBridge()]

As you can see with this root compound task, the first method defines the troll’s highest
priority. If he can see the enemy, he will navigate using NavigateToEnemy task and
attack his enemy with the DoTrunkSlam task. If not, he will fall to the next method.
This next method will run three tasks; choose the next bridge to check, navigate to that
bridge, and check the bridge for enemies. Let’s take a look at the primitive tasks that make
up these methods and the rest of the domain.

Primitive Task [DoTrunkSlam]
	 Operator [AnimatedAttackOperator(TrunkSlamAnimName)]
Primitive Task [NavigateToEnemy]
	 Operator [NavigateToOperator(EnemyLocRef)]
		 Effects [WsLocation = EnemyLocRef]
Primitive Task [ChooseBridgeToCheck]
	 Operator [ChooseBridgeToCheckOperator]
Primitive Task [NavigateToBridge]
	 Operator [NavigateToOperator(NextBridgeLocRef)]
		 Effects [WsLocation = NextBridgeLocRef]
Primitive Task [CheckBridge]
	 Operator [CheckBridgeOperator(SearchAnimName)]

The first task DoTrunkSlam is an example of how a primitive task can describe an
operator in terms of the HTN domain. Here, the task is really executing an animated
attack operator and the animation name is being passed in as a term. The next task

15512.  Exploring HTN Planners through Example

NavigateToEnemy is also an example of this, but on the successful completion of this
task, the world state WsLocation is set to EnemyLocRef via the primitive task’s effect.

12.4 � Finding a Plan

With a domain made up of compound and primitive tasks, we are starting to form an image
of how these are put together to represent an NPC. Combine that with the world state and
we can talk about the work horse of our HTN, the planner. There are three conditions that
will force the planner to find a new plan: the NPC finishes or fails the current plan, the NPC
does not have a plan, or the NPC’s world state changes via a sensor. If any of these cases occur,
the planner will attempt to generate a plan. To do this, the planner starts with a root compound
task that represents the problem domain in which we are trying to plan for. Using our earlier
example, this root task would be the BeTrunkThumper task. This root task is pushed onto
the TasksToProcess stack. Next, the planner creates a copy of the world state. The planner
will be modifying this working world state to “simulate” what will happen as tasks are executed.

After these initialization steps are taken, the planner begins to iterate on the tasks to
process. On each iteration, the planner pops the next task off the TasksToProcess
stack. If it is a compound task, the planner tries to decompose it—first, by searching
through its methods looking for the first set of conditions that are valid. If a method is
found, that method’s subtasks are added on to the TaskToProcess stack. If a valid
method is not found, the planner’s state is rolled back to the last compound task that was
decomposed. We will go into more detail about restoring the planner’s state later.

If the next task is primitive, we need to check its preconditions against the working
world state. If the conditions are met, the task is added to the final plan and its effects are
applied to the working world state. The effects are applied because the planner assumes
that task is going to succeed. This allows future methods to consider that new state. If the
primitive task’s conditions are not met, the planner’s state is rolled back such as was done
for the compound task. This iteration process is continued until the TasksToProcess
stack is empty. Upon completion, the planner will either end up with a list of primitive
tasks or the planner will have rolled back far enough that the result was no plan. Below is
the example pseudocode that shows this process.

WorkingWS = CurrentWorldState
TasksToProcess.Push(RootTask)
while TasksToProcess.NotEmpty
{
	 CurrentTask = TasksToProcess.Pop()
	 if CurrentTask.Type == CompoundTask
	 {
		 SatisfiedMethod = CurrentTask.FindSatisfiedMethod(WorkingWS)
		 if SatisfiedMethod != null
		 {
			 RecordDecompositionOfTask(CurrentTask, FinalPlan, DecompHistory)
			 TasksToProcess.InsertTop(SatisfiedMethod.SubTasks)
		 }
		 else
		 {
			 RestoreToLastDecomposedTask()
		 }
	 }

156 Part II.  Architecture

	 else//Primitive Task
	 {
		 if PrimitiveConditionMet(CurrentTask)
		 {
			 WorkingWS.ApplyEffects(CurrentTask.Effects)
			 FinalPlan.PushBack(CurrentTask)
		 }
		 else
		 {
			 RestoreToLastDecomposedTask()
		 }
	 }
}

There is a bit of magic going on in the RecordDepositionOfTask and RestoreTo
LastDecomposedTask functions that should be explained in more detail. The record
function records the planner’s state onto the DecompHistory stack. This includes
the TasksToProcess and FinalPlan containers as well as the method chosen for
the decomposition and its owning compound task. By popping off this recorded state
to the planner via the restore function, the planner can backtrack either when a com-
pound task cannot be decomposed or when a primitive’s conditions aren’t satisfied.

As you might have realized, the planner uses a depth-first search to find a valid plan. This
does mean that you may have to explore the whole domain to find a valid plan. However,
it’s important to remember that you are traversing a hierarchy of tasks. This hierarchy
allows the planner to cull large sections of the network via the compound task’s methods.
Because we aren’t using a heuristic or cost—such as with A* and Dijkstra searches—we
can skip any kind of sorting. These features allowed the HTN planner in Transformers:
Fall of Cybertron to be considerably faster than our GOAP system used in Transformers:
War for Cybertron [HighMoon 10].

Now that the planner has been explained, we can expand our example and see how
a modified version of the Trunk Thumper domain might decompose (Figure 12.2). This
domain’s root task is still BeTrunkThumper, but the DoTrunkSlam is now a com-
pound task. DoTrunkSlam has two methods—each doing a different version of the
trunk slam. The method’s conditions for both compound tasks have been omitted for
simplicity. Underneath the domain you can see the planner’s iterations going from top to
the bottom. For each iteration, you can see the left-most task in the TasksToProcess
stack being processed.

12.5 � Running the Plan

Running an HTN plan is pretty straightforward. The NPC’s plan runner will attempt to
execute each primitive task’s operator in sequence. As it successfully completes each task,
the planner applies the task’s effects to the world state. If the task fails for some reason that
is specific to the operator it’s running, the plan also fails and forces a re-plan.

The plan can also fail if the current or any of the remaining task’s conditions become
invalid. The plan runner monitors these tasks’ preconditions against a “working world
state” much like the planner. As it confirms each task’s preconditions, its effects are applied

15712.  Exploring HTN Planners through Example

to the working world state. It’s important that it applies the effects because following task’s
preconditions might rely on these effects being applied in order to be valid. This plan vali-
dation allows the HTN domain to be a bit more expressive and reactive to the changes of
the world state.

12.6 � Using Recursion for Greater Expressiveness

After seeing our troll in game, the designers think that the tree trunk attack is a little over-
powered. They suggest that the trunk breaks after three attacks, forcing the troll to search
for another one. First we can add the property WsTrunkHealth to the world state.

Tasks
To Process

Tasks
To Process

Tasks
To Process

Tasks
To Process

Tasks
To Process

Tasks
To Process

Tasks
To Process

RecoverSlam

Slam

SlamTell

Tell

DoTrunkSlam

DoTrunkSlam

DoTrunkSlam

BeTrunk�umper DoTrunkSlam

Trunk �umper Domain

Tell

TellNavToEnemyFinal
Plan

Final
Plan

Final
Plan

Final
Plan

Final
Plan

Final
Plan

Final
Plan

Planner Iterations

NavToEnemy

NavToEnemy

NavToEnemy

NavToEnemy

NavToEnemy

NavToEnemy

NavToBridge CheckBridgeChooseBridge

BeTrunk�umper

Method 1 Method 1
Tell Slam

SuperSlamTaunt
Method 0 Method 0

Slam

Recover

Recover

Recover

Recover

Recover

Recover

Figure 12.2

Decomposition of the Trunk Thumper domain, showing the resulting plan if BeTrunkThumper.
Method0 and DoTrunkSlam.Method.1 were chosen.

158 Part II.  Architecture

By wrapping up the attack method into its own compound task and adding a little recur-
sion, we will be able to modify the troll’s attack behavior. The changed domain would
now be:

Compound Task [BeTrunkThumper]
	 Method [WsCanSeeEnemy == true]
		 Subtasks [AttackEnemy()]// using the new compound task
	 Method [true]
		 Subtasks [ChooseBridgeToCheck(), NavigateToBridge(), CheckBridge()]
Compound Task [AttackEnemy]//new compound task
	 Method [WsTrunkHealth > 0]
		 Subtasks [NavigateToEnemy(), DoTrunkSlam()]
	 Method [true]
		 Subtasks [FindTrunk(), NavigateToTrunk(), UprootTrunk(), AttackEnemy()]
Primitive Task [DoTrunkSlam]
	 Operator [DoTrunkSlamOperator]
		 Effects [WsTrunkHealth += -1]
Primitive Task [UprootTrunk]
	 Operator [UprootTrunkOperator]
		 Effects [WsTrunkHealth = 3]
Primitive Task [NavigateToTrunk]
	 Operator [NavigateToOperator(FoundTrunk)]
		 Effects [WsLocation = FoundTrunk]

When our troll can see the enemy, he will attack just as before—only now, the behavior
is wrapped up in a new compound task called AttackEnemy. This task’s high priority
method performs the navigate and slam like the original domain, but now has the condi-
tion that the trunk has some health. The change to the DoTrunkSlam task will decre-
ment the trunk’s health every successful attack. This allows the planner to drop to the
lower priority method if it has to accommodate a broken tree trunk.

The second method of AttackEnemy handles getting a new tree trunk. It first
chooses a new tree to use, navigates to that tree, and uproots it, after which it is able to
AttackEnemy. Here is where the recursion comes in. When the planner goes to decom-
pose the AttackEnemy task again it can now consider the methods again. If the tree
trunk’s health was still zero, this would cause the planner to infinite loop. But the new
task UprootTrunk’s effect sets WsTrunkHealth back to three, allowing us to have
the plan FindTrunk → NavigateToTrunk → UprootTrunk → NavigateToEnemy
→ DoTrunkSlam. This new domain allows us to reuse methods already in the domain to
get the troll back to thumping.

12.7 � Planning for World State Changes not Controlled by Tasks

So far all of the plans we have been building depend on the primitive task’s effects chang-
ing the world state. What happens when the world state is changed outside the control
of primitive tasks, however? To explore this, let’s modify our example once again. Let us
assume that a designer notices that when the troll can’t see the enemy, he simply goes back

15912.  Exploring HTN Planners through Example

to patrolling the bridges. The designer asks you to implement a behavior that will chase
after the enemy and react once he sees the enemy again. Let’s look at the changes we could
make to the domain to handle this issue.

Compound Task [BeTrunkThumper]
	 Method [WsCanSeeEnemy == true]
		 Subtasks [AttackEnemy()]
	 Method [WsHasSeenEnemyRecently == true]//New method
		 Subtasks [NavToLastEnemyLoc(), RegainLOSRoar()]
	 Method [true]
		 Subtasks [ChooseBridgeToCheck(), NavigateToBridge(), CheckBridge()]
Primitive Task [NavToLastEnemyLoc]
	 Operator [NavigateToOperator(LastEnemyLocation)]
		 Effects [WsLocation = LastEnemyLocation]
Primitive Task [RegainLOSRoar]
	 Preconditions[WsCanSeeEnemy == true]
	 Operator [RegainLOSRoar()]

With this rework, if the Trunk Thumper can’t see the enemy, the planner will drop down to
the new method that relies on WsHasSeenEnemyRecently world state property. This
method’s tasks will navigate to the last place the enemy was seen and do a big animated
“roar” if he once again sees the enemy. The problem here is that the RegainLOSRoar
task has a precondition of WsCanSeeEnemy being true. That world state is handled by
the troll’s vision sensor. When the planner goes to put the RegainLOSRoar task on the
final task list it will fail its precondition check, because there is nothing in the domain that
represents what the expected world state will be when the navigation completes.

To solve this, we are going to introduce the concept of expected effects. Expected effects
are effects that get applied to the world state only during planning and plan validation.
The idea here is that you can express changes in the world state that should happen based
on tasks being executed. This allows the planner to keep planning farther into the future
based on what it believes will be accomplished along the way. Remember that a key advan-
tage planners have at decision making is that they can reason about the future, helping
them make better decisions on what to do next. To accommodate this, we can change
NavToLastEnemyLoc in the domain to:

Primitive Task [NavToLastEnemyLoc]
	 Operator [NavigateToOperator(LastEnemyLocation)]
		 Effects [WsLocation = LastEnemyLocation]
		 ExpectedEffects [WsCanSeeEnemy = true]

Now when this task gets popped off the decomposition list, the working world state will get
updated with the expected effect and the RegainLOSRoar task will be allowed to pro-
ceed with adding tasks to the chain. This simple behavior could have been implemented a
couple of different ways, but expected effects came in handy more than a few times during
the development of Transformers: Fall of Cybertron. They are a simple way to be just a little
more expressive in a HTN domain.

160 Part II.  Architecture

12.8 � How to Handle Higher Priority Plans

To this point, we have been decomposing compound tasks based on the order of the task’s
methods. This tends to be a natural way of going about our search, but consider these
attack changes to our Trunk Thumper domain.

Compound Task [AttackEnemy]
	 Method [WsTrunkHealth > 0, AttackedRecently == false,
CanNavigateToEnemy == true]
		 Subtasks [NavigateToEnemy(), DoTrunkSlam(), RecoveryRoar()]
	 Method [WsTrunkHealth == 0]
		 Subtasks [FindTrunk(), NavigateToTrunk(), UprootTrunk(), AttackEnemy()]
	 Method [true]
		 Subtasks [PickupBoulder(), ThrowBoulder()]
Primitive Task [DoTrunkSlam]
	 Operator [DoTrunkSlamOperator]
		 Effects [WsTrunkHealth += -1, AttackedRecently = true]
Primitive Task [RecoveryRoar]
	 Operator [PlayAnimation(TrunkSlamRecoverAnim)]
Primitive Task [PickupBoulder]
	 Operator [PickupBoulder()]
Primitive Task [ThrowBoulder]
	 Operator [ThrowBoulder()]

After some play testing, our designer commented that our troll is pretty punishing.
It only lets up on its attack against the player when it goes to grab another tree trunk. The
designer suggests putting in a recovery animation after the trunk slam and a new condi-
tion not allowing the slam attack if the troll has attacked recently. Our designer has also
noticed that our troll behaves strangely if he could not navigate to his enemy (due to an
obstacle, for example). He decided to put in a low priority attack to throw a boulder if
this happened.

Everything about these behavior changes seems fairly straightforward, but we need to
take a closer look at what could happen while running the trunk slam plan. After the actual
slam action, we start running the RecoveryRoar task. If, while executing this roar, the
world state were to change and cause a re-plan, the RecoveryRoar task will be aborted.
The reason for this is that, when the planner gets to the method that handles the slam,
the AttackRecently world state will be set to true because the DoTrunkSlam com-
pleted successfully. This will cause the planner to skip the “slam” method tasks and fall
through to the new “throw boulder” method, resulting in a new plan. This will cause the
RecoveryRoar task to be aborted mid-execution, even though the currently running
plan is still valid.

In this case, we need a way to identify the “priority” of a running plan. There are a couple
ways of solving this. Since HTN is a graph, we can use some form of a cost-based search such
as A* or Dijkstra, for example. This would involve binding some sort of cost to our tasks or
even methods. Unfortunately, tuning these costs can be pretty tricky in practice. Not only
that, we would now have to add sorting to our planner, which will slow its execution.

Instead we would like to keep the simplicity and readability of “in-order priority” for
our methods. The problem is a plan does not know the decomposition order of compound
tasks that the planner took to arrive at the plan—it just executes primitive tasks’ operators.

16112.  Exploring HTN Planners through Example

The order of a compound task’s methods are what we want to use to define priority—yet
the plan isn’t aware of what a compound task is. To get around this, we can encode our
traversal through the HTN domain as we search for a plan. This method traversal record
(MTR) simply stores the method index chosen for each compound task that was decom-
posed to create the plan. Now that we have the MTR we can use it in two different ways to
help us find the better plan. The simplest method would be to plan normally and compare
the newly found plan’s MTR with the currently running plan’s MTR. If all of the method
indexes chosen in the new plan are equal or higher priority, we found our new plan. An
example is shown in Figure 12.3.

We can also choose to use the current plan’s MTR during the planning process, as we
decompose compound tasks in the new search. We can use the MTR as we search for a
valid method only allowing methods that are equal to or higher priority. This allows us
to cull whole branches of our HTN based on the current plan’s MTR. Our first method is
the easier of the two, but if you find you’re spending a lot of your processing time in your
planner, the second method could help speed that up.

Now that we have the ability to abort currently running plans for higher priority plans,
there is a subtle implementation detail that can cause unexpected behaviors in your NPCs.
If you set up your planner to re-plan on world state changes, the planner will try to re-plan
when tasks apply their effects on successful execution. Consider this altered subsection of
the Trunk Thumper’s domain below.

CheckBridgeNavToBridge

NavToEnemy Tell Slam Recover

NavToEnemy

NavToBridge

NavToEnemy Recover Taunt

Tell Slam

SuperSlamDoTrunkSlam

CheckBridge

Taunt SuperSlam Recover

ChooseBridgeMTR:
1

MTR:
0, 1

MTR:
0, 0

Low Priority

High Priority

ChooseBridge

Method 1 Method 1

Method 0 Method 0

Trunk �umper Domain

BeTrunk�umper DoTrunkSlam

Figure 12.3

All possible plans with the Trunk Thumper domain and the Method Traversal Record for
each plan, sorted by priority.

162 Part II.  Architecture

Compound Task [AttackEnemy]
	 Method [WsPowerUp = 3]
		 Subtasks [DoWhirlwindTrunkAttack(), DoRecovery()]
	 Method [WsEnemyRange > MeleeRange,]
		 Subtasks [DoTrunkSlam(), DoRecovery()]
Primitive Task [DoTrunkSlam]
	 Operator [AnimatedAttackOperator(TrunkSlamAnimName)]
		 Effects [WsPowerUp += 1]
Primitive Task [DoWhirlwindTrunkAttack]
	 Operator [DoWhirlwindTrunkAttack()]
		 Effects [WsPowerUp = 0]
Primitive Task [DoRecover]
	 Operator [PlayAnimation(TrunkSlamRecoveryAnim)]

This new behavior is designed to have the troll do the DoWhirlwindTrunkAttack
task, after executing the DoTrunkSlam three times. This is accomplished by having
the DoTrunkSlam task’s effect increase the WsPowerUp property by one each time it
executes. This might seem fine at first glance, but you will have designers at your desk
informing you that the troll now combos a trunk slam directly into a whirlwind attack
every time. The problem arises on the third execution of DoTrunkSlam. The task’s effects
are applied and the planner forces a re-plan. With WsPowerUp equal to three, the planner
will pick the higher priority Whirlwind attack method. This cancels the DoRecovery
task that is designed to break the attacks up, allowing the player some time to react.

Normally, the whirlwind method should be able to cancel plans of lower priority. But
the currently running plan is still valid, and the only reason this bug is occurring is that
the planner is replanning on all world state changes, including changes by successfully
completed primitive task’s effects. Simply not replanning when the world state changes via
effects being applied from a primitive tasks will solve this problem—which is fine, because
the plan was found with those world state changes in mind anyway. While this is a good
change to make, it won’t be the full solution. Any world state changes outside of the tasks
the plan runner is executing will force a replan and cause the bug to resurface.

The real problem here is the domain and how it’s currently setup. There are a couple
of different ways we can solve this, and it really matters how you view it. One could say
that the recovery animation is part of the attack, so it might be worth incorporating that
animation into the attack animation. That way the recovery always plays after the slam
attack. This hurts the modularity of the domain. What if the designers want to chain three
slams then do a recovery?

A better way would be to use world state to describe the reason that DoRecovery is
needed. Consider the change below:

Compound Task [AttackEnemy]
	 Method [WsPowerUp = 3]
		 Subtasks [DoWhirlwindTrunkAttack(), DoRecovery()]
	 Method [WsEnemyRange > MeleeRange,]
		 Subtasks [DoTrunkSlam(), DoRecovery()]

16312.  Exploring HTN Planners through Example

Primitive Task [DoTrunkSlam]
	 Operator [AnimatedAttackOperator(TrunkSlamAnimName)]
		 Effects [WsPowerUp += 1, WsIsTired = true]
Primitive Task [DoWhirlwindTrunkAttack]
	 Preconditions [WsIsTired == false]
	 Operator [DoWhirlwindTrunkAttack()]
		 Effects [WsPowerUp = 0]
Primitive Task [DoRecover]
	 Operator [PlayAnimation(TrunkSlamRecoveryAnim)]
		 Effects [WsIsTired = false]

Using the WsIsTired world state, we can properly describe the reason we need the
DoRecovery task. The DoTrunkSlam task now makes the Trunk Thumper tired, and
he can’t execute DoWhirlwindTrunkAttack until he gets a chance to recover. Now,
when the world state changes, the DoRecovery task won’t be interrupted and yet we
save the modularity of DoTrunkSlam and DoRecovery. When implementing prior-
ity plan picking, these subtle details can really throw a wrench in your HTN behaviors.
It’s important to ask yourself if you are properly representing the world when you run
into these types of behavior issues. As we saw in this case, a simple world state is all that
was needed.

12.9 � Managing Simultaneous Behaviors

A lot of different behavior selection algorithms are very good at doing one thing at a time,
but complications arise when it comes time to do two things at once. Luckily, there are a
couple ways you can handle this problem with HTN.

One’s first reaction might be to roll multiple operators into one. This will work, but this
has a couple pitfalls: it removes the ability to reuse operators we have already developed,
the combining of multiple operators brings an added complexity that hurts maintain-
ability, and any variation to this combined operator can force us to duplicate code if not
handled correctly. Chances are you are going to run into behavior that will need to do
multiple things at once, often enough that you are going to want to avoid this method.

A more intuitive way to handle this is to build a separate HTN domain to handle differ-
ent components of your NPC. Using our troll example, we might have a behavior where we
need him to navigate towards his enemy but guard himself from incoming range attacks.
We can break this up into multiple operators that control different parts of the body—a
navigation operator that would handle the lower body and a guard operator to handle the
upper body. Knowing that, we can build two domains and use two planners to deal with
the upper and lower bodies.

You may find early on that this can be tricky to implement. The issue that arises is that
you need to sync up the tasks in each planner. You can accomplish this by making sure you
have world state that describes what’s going on in each planner. In our troll example, we
can have a world state called Navigating that will be set to true when any lower body navi-
gation task is running. This will allow the upper body planner to make decisions based on
this information. Below is an example of how these two domains might be set up.

164 Part II.  Architecture

Compound Task [BeTrunkThumperUpper]//Upper domain
	 Method [WsHasEnemy == true, WsEnemyRange <= MeleeRange]
		 Subtasks [DoTrunkSlam()]
	 Method [Navigating == true, HitByRangedAttack == true]
		 Subtasks [GuardFaceWithArm()]
	 Method [true]
		 Subtasks [Idle()]
Compound Task [BeTrunkThumperLower]//Lower domain
	 Method [WsHasEnemy == true, WsEnemyRange > MeleeRange]
		 Subtasks [NavigateToEnemy(), BeTrunkThumperLower()]
	 Method [true]
		 Subtasks [Idle()]
Primitive Task [DoTrunkSlam]
	 Operator [DoTrunkSlamOperator]
Primitive Task [GuardFaceWithArm]
	 Operator [GuardFaceWithArmOperator]
Primitive Task [NavigateToEnemy]
	 Operator [NavigateToOperator(Enemy)]
		 Effects [WsLocation = Enemy]
Primitive Task [Idle]
	 Operator [IdleOperator]

Now this works great, but there are a couple minor problems with it. A second planner
will add a bit of performance hit. Keeping these domains synchronized will hurt their
maintainability. Lastly, you will not gain any friends when other programmers run into
the debugging headache you just created with your multiple planners—trust me.

There is another alternative for our troll shielding example that does not involve two
planners. Currently, navigation tasks complete after successfully arriving at the destination.
Instead, we can have the navigation task start the path following and complete immediately,
since the path following is happening in the background and not as a task in the plan run-
ner. This frees us to plan during navigation, which allows us to put an arm up to shield the
troll from incoming fire. This works as long as we have a world state that describes that we
are navigating and the current distance to the destination. With this we can detect when we
arrive and plan accordingly. Below is an example of how the domain would look.

Compound Task [BeTrunkThumper]
	 Method [WsHasEnemy == true, WsEnemyRange <= MeleeRange]
		 Subtasks [DoTrunkSlam()]
	 Method [WsHasEnemy == true, WsEnemyRange > MeleeRange]
		 Subtasks [NavigateToEnemy()]
	 Method [Navigating == true, HitByRangedAttack == true]
		 Subtasks [GuardFaceWithArm()]
	 Method [true]
		 Subtasks [Idle()]
Primitive Task [DoTrunkSlam]
	 Operator [DoTrunkSlamOperator]

16512.  Exploring HTN Planners through Example

Primitive Task [GuardFaceWithArm]
	 Operator [GuardFaceWithArmOperator]
Primitive Task [NavigateToEnemy]
	 Operator [NavigateToOperator(Enemy)]
		 Effects [Navigating = true]
Primitive Task [Idle]
	 Operator [IdleOperator]

As you can see, this domain is similar to our dual domain approach. Both approaches rely
on world state to work correctly. With the dual domain, the Navigating world state was
used to keep the planners in sync. In the later approach, world state was used to represent
the path following happening in the background, but without the need of two domains
and two planners running.

12.10 � Speeding up Planning with Partial Plans

Let us assume that we have built the Trunk Thumper’s domain into a pretty large network.
After optimizing the planner itself, you have found the need to knock a couple milli
seconds off your planning time. There are a couple of ways we can still eek more perfor-
mance out of it. As we explained, HTN naturally culls out large portions of the search
space via the methods in compound tasks. There may be instances, however, where we can
add a few more methods to cull more search space. In order to do this, we need to have the
right world state representation.

If those techniques don’t get you the speed you need, partial planning should. Partial
planning is one of the most powerful features of HTN. In simplest terms, it allows the
planner the ability to not fully decompose a complete plan. HTN is able to do this because
it uses forward decomposition or forward search to find plans. That is, the planner starts
with the current world state and plans forward in time from that. This allows the planner
to only plan ahead a few steps.

GOAP and STRIPS planner variants, on the other hand, use a backward search [Jorkin 04].
This means the search makes its way from a desired goal state toward the current world
state. Searching this way means the planner has to complete the entire search in order to
know what first step to take. We will go back to a simple version of our Trunk Thumper
domain to demonstrate how to break it up into a partial plan domain.

Compound Task [BeTrunkThumper]
	 Method [WsCanSeeEnemy == true]
		 Subtasks [NavigateToEnemy(), DoTrunkSlam()]
Primitive Task [DoTrunkSlam]
	 Operator [DoTrunkSlamOperator]
Compound Task [NavigateToEnemy]
	 Method […]
		 Subtasks […]

Here, we have a method that will expand both the NavigateToEnemy and
DoTrunkSlam tasks if WsCanSeeEnemy is true. Since whatever tasks that make up

166 Part II.  Architecture

NavigateToEnemy might take a long time, it would make this a good option to split
into a partial plan. There isn’t much point to planning too far into the future since there is
a good chance the world state could change, forcing our troll to make a different decision.
We can convert this particular plan into a partial plan:

Compound Task [BeTrunkThumper]
	 Method [WsCanSeeEnemy == true, WsEnemyRange > MeleeRange]
		 Subtasks [NavigateToEnemy()]
	 Method [WsCanSeeEnemy == true]
		 Subtasks [DoTrunkSlam()]
Primitive Task [DoTrunkSlam]
	 Operator [DoTrunkSlamOperator]
Compound Task [NavigateToEnemy]
	 Method […]
		 Subtasks […]

Here, we have broken the previous method into two methods. The new high priority
method will navigate to the enemy only if the troll is currently out of range. If the troll
is not outside of melee range, he will perform the trunk slam attack. Navigation tasks
are also prime targets for partial plans, since they often take a long time to complete.
It’s important to point out that splitting this plan is only doable if there is a world state
available to differentiate the split.

This method of partial planning requires the author of the domain to create the split
themselves. But there is a way to automate this process. By assigning the concept of “time”
to primitive tasks, the planner can keep track of how far into the future it has already
planned. There are a couple issues with this approach, however. Consider the domain.

Compound Task [BeTrunkThumper]
	 Method [WsCanSeeEnemy == true]
		 Subtasks [NavigateToEnemy(), DoTrunkSlam()]
Primitive Task [DoTrunkSlam]
	 Preconditions[WsStamina > 0]
	 Operator [DoTrunkSlamOperator]
Compound Task [NavigateToEnemy]
	 Method […]
		 Subtasks […]

With this domain, assume the primitive tasks that make up the navigation cross the time
threshold that is set in the planner. This would cause the troll to start navigating to the
enemy. But if the world state property WsStamina is zero, the troll can’t execute the
DoTrunkSlam anyway because of its precondition. The automated partial plan split
removed the ability to validate the plan properly. Of course the method can be written to
include the stamina check to avoid this problem. But since both ways are valid, it is better to
insure both will produce the same results. Not doing so will cause subtle bugs in your game.

Even if you feel that this isn’t a real concern, there is also the question of how to con-
tinue where the partial plan left off. We could just replan from the root, but that would

16712.  Exploring HTN Planners through Example

require us to change the domain in some way to understand that it’s completed the first
part of the full plan. In the case of our example, we would have to add a higher priority
method that checks to see if we are in range to do the melee attack. But if we have to do
this, what’s the point of the automated partial planning?

A better solution would be to record the state of the unprocessed list. With that we can
modify the planner to start with a list of tasks, instead of the one root task. This would
allow us to continue the search where we left off. Of course, we would not be able to roll
back to before the start of the second part of the plan. Running into this case would mean
that you’ve already run tasks that you should not have. So if the user runs into this case,
they can’t use partial planning because there are tasks later in the plan that need to be
validated in order to get the correct behavior.

With Transformers: Fall of Cybertron, we simply built the partial plans into the domains.
For us, the chance of putting subtle bugs into the game was high and we found that we
were naturally putting partial plans in our NPC domains anyway when full plan valida-
tion wasn’t necessary. A lot of our NPCs were using the last example from Section 12.9 for
navigation, which is also an example of partial planning.

12.11 � Conclusion

Going through the process of creating a simple NPC can be a real eye-opener to the details
involved with implementation of any behavior selection system. Hopefully we have explored
enough of hierarchical task networks to show its natural approach to describing behaviors,
the re-usability and modularity of its primitive tasks. HTN’s ability to reason about the
future allows an expressiveness only found with planners. We have also attempted to point
out potential problems a developer may come across when implementing it. Hierarchical
task networks were a real benefit to the AI programmers on Transformers: Fall of Cybertron
and we’re sure it will be the same for you.

References

[Erol et al. 94] K. Erol, D. Nau, and J. Henler, “HTN planning: Complexity and expressivity.”
AAAI-94 Proceedings, 1994.

[Erol et al. 95] K. Erol, J. Henler, and D. Nau. “Semantics for Hierarchical Task-Network
Planning.” Technical report TR 95-9. The Institute for Systems Research, 1995.

[Ghallab et al. 04] M. Ghallab, D. Nau, and P. Traverso, Automated Planning. San Francisco,
CA: Elsevier, 2004, pp. 229–259.

[HighMoon 10] Transformers: War for Cybertron, High Moon Studios/Activision Publishing,
2010.

[HighMoon 12] Transformers: Fall of Cybertron, High Moon Studios/Activision Publishing,
2012.

[Jorkin 04] Jeff Orkin. “Applying goal-oriented action planning to games.” In AI Game
Programming Wisdom 2, edited by Steve Rabin. Hingham, MA: Charles River Media,
2004, pp. 217–227.

