
127

Building Utility Decisions into
Your Existing Behavior Tree
Bill Merrill

10

10.1 � Introduction

While there is no “silver bullet” approach to authoring AI behavior, behavior trees tend
to strike a strong overall balance across ease of implementation, ease of visualization, and
adoptability for new team members. Building supporting tools is straightforward, and
a rapid workflow can be established in relatively short order. On the other hand, behav-
ior trees have a fundamental limitation. They are poor at modeling analog concepts such
as uncertainty over multiple valid options. Game characters are simply fun and engag-
ing machines for players to interact with and even exploit, but requirements still often
demand more than strictly Boolean selection logic. Because hand-coding analog selection
logic everywhere that it is required gets messy quickly, a better solution is needed.

Utility-based decision-making addresses this problem head-on. Rather than creating
variation through randomness or forcing agents to arbitrarily take one valid option over
another, we can apply existing, well-documented techniques to deal with “gray area”
decisions in an elegant manner. Most satisfyingly, we can do all of this without uprooting
an existing implementation by imposing structural changes and we don’t have to give up
any of the most desirable traits of behavior trees.

10.1	 Introduction
10.2	 Why Behavior Trees?
10.3	 It’s Not All Candy Canes

and Gum Drops
10.4	 What Is Utility Theory?
10.5	 Applying Utility in

Decision Making

10.6	 The Utility Selector
10.7	 Propagating Utility
10.8	 A Twist on Behavior

Trees: Evaluation
versus Execution

10.9	 Conclusion

128 Part II.  Architecture

This article proposes a few simple components that enable the integration of utility
considerations into a behavior tree’s normal selection process. The express goal of this
integration is to overcome much of the behavior tree architecture’s biggest weaknesses
without sacrificing its strengths.

10.2 � Why Behavior Trees?

Behavior trees have been growing steadily in popularity, and for good reason. Put simply,
they offer a very pragmatic approach to making decisions. It is their simplicity I find most
valuable, and in a world of increasingly complex software, simplicity should not go under-
valued. The aggregation of systems comprising AI in modern games is becoming vast, and
isn’t shrinking anytime soon. It’s important to find what works for the team and try not to
force new learning curves unnecessarily.

Behavior trees have become somewhat of a standard in the industry. Many AAA stu-
dios make use of behavior tree technology, including Bungie with the Halo series [Bungie
07], and Crytek with Crysis 2 [Crytek 11]. A wealth of information on behavior trees is
available online and existing toolkits are available for developers looking to get started
quickly [Champandard 08, Brainiac 09]. This implementation included with this chapter
is basic, but also relatively complete and free for any use. To see more on how developers
are constantly improving on the traditional behavior tree, Alex Champandard’s behavior
tree toolkit provides tips on how to implement your behavior tree to optimize perfor-
mance and memory access patterns on systems such as consoles that demand the extra
attention [Champandard 12].

For my team in particular, the accessibility and scalability of behavior trees has us
using them as our primary mechanism for decision making. Productivity depends largely
on designers, scripters, and animators gaining a clear understanding of how a given char-
acter intends to behave and react to change. We never fully attained this when using a
STRIPS-based planner or our finite state machine (FSM) prior to that. In both cases, so
much of what was occurring “under the hood” was largely opaque to anyone other than
the AI programmer(s). In the case of the planner, it was too organic and mysterious for
the designers’ comfort. Additionally, emergent behavior is still not a desirable feature
most of the time. Planners also make it difficult to string together specific sequences of
actions in a defined order when needed. As for FSMs, the lack of true modularity, complex
state logic, and a tendency to get messy negatively affected both the designers and pro-
grammers alike. This was especially true as NPC characters developed over time, requir-
ing more complex transition logic. Special cases seemed to become the norm, generating
many uninvited surprises along the way as we attempted to share functionality with past
projects and other game teams.

With behavior trees, our designers can effectively visualize what’s happening, in
real-time, and can intuitively apply changes or additions with a clear picture of what to
expect. Programmers can also easily oversee the changes. Tree structures are a familiar
and relatively easy concept to digest, with many designers industry-wide already using
them in some form for major aspects of their workflow. This enables us to provide the
designers with easily-adoptable debugging and authoring tools. This is invaluable during
development when creating complex tools and chasing bugs can steal precious resources
from iteration and content creation.

12910.  Building Utility Decisions into Your Existing Behavior Tree

10.3 � It’s Not All Candy Canes and Gum Drops

The features required by a game change constantly, putting strain on nearly every system
in your codebase. AI is particularly susceptible to this problem because it’s driven directly
by design, and changes more rapidly over the course of a project than other systems of
similar breadth and complexity. It’s our responsibility as programmers to question the
fitness of our solutions in addressing the problems at hand. In terms of decision making,
I found myself regularly questioning the fitness of behavior trees while implementing
behaviors that didn’t have easily quantifiable static priority, or didn’t intuitively distill
down to simple yes/no criteria.

In a standard behavior tree, priority is static. It is baked right into the tree. The simplicity
is welcome, but in practice it can be frustratingly limiting. The same behavior may require
different relative priorities, depending on the context. Ensuring our Monster Hunter’s
primary weapon has a full clip should always be a consideration, even if we’re casually
patrolling the jungle. But if we’re engaged with a savage monster, it’s absolutely necessary
that we continue to deal damage. Behavior tree authors often deal with this conundrum
by duplicating sections of the tree at different branches, with different conditions and/or
priorities. Even with slick sub-tree instancing or referencing, this still becomes inefficient,
verbose, and potentially fragile.

Even more troublesome cases surface when a simple yes versus no determination isn’t
easily established. If our Combat selector is evaluating its options, should it choose to have
us seek a rendezvous with our medic and his space-age healing tech, or should we put
everything we have into quickly dropping the giant alien beast threatening to eat us all?
This sort of decision is best made only after considering a potentially broad combination
of inputs.

Decisions are rarely binary, and many behaviors simply do not have priorities we can
comfortably establish offline. Let’s start with a simple example behavior tree (Figure 10.1).
Having no ability to shoot is a precondition for the Seek Medic behavior, forcing us to dupli-
cate the behavior, as seen in Figure 10.2. We could start by giving Seek Medic stricter condi-
tions and prioritizing it over Shoot, but this will likely create the opposite problem where
the Monster Hunter immediately takes the Seek Medic action the instant conditions pass.
This is the sort of fundamental problem we want to address with the integration of utility.

Monster Hunter

Combat

Reload Shoot Seek Medic

Relaxed

PatrolEat Nap

Figure 10.1

Here is a simple, minimal behavior tree for the Monster Hunter.

130 Part II.  Architecture

10.4 � What Is Utility Theory?

As it applies to game AI behavior, utility theory is simply the process of measuring the
relative suitability of a particular action [Mark 09]. To make good decisions, we need to
quantify how worthwhile an option is, given all the relevant facts, rather than make a deter-
mination on validity alone. Industry veterans who advocate the use of utility theory like
to remind us that there is rarely just one correct decision to make. So the question is: why
do we still favor decision-making architectures that fail to address this problem elegantly?

In reality, an agent of moderate complexity may have dozens of potential options on the
table at once. There may even be several perfectly sensible options. Utility theory recognizes
that decisions are seldom black and white, and attempts to formally address the complexi-
ties of combining various pieces of analog information together to make a final determi-
nation. Figuring out how to identify and compare the information in a logical manner is
much of the challenge. The most important goal is to ensure that the overall computation is
reliable given any combination of inputs, and always results in a reasonable choice.

10.5 � Applying Utility in Decision Making

Game agents are approximations of autonomous entities within the limited scope of a
game’s specific design. For this reason, it’s not worth the effort in most games to deeply
analyze mountains of data for the purpose of AI decision making. Going too broad with
the inputs effectively dilutes their meaning, resulting in muddy, or even illogical, formu-
las. All that should concern us is building an experience that feels believable and engaging
to the player within the context of the game.

It’s worth first making an effort to represent the input values in a manner that enables
direct comparison. This helps avoid a confusing apples-to-oranges quagmire. One easy
way to accomplish this is to identify a common unit of measurement. It can be a lot like
solving a system of equations. We can substitute one variable with some combination of
other, better understood variables. If we’re combining two inputs, it makes sense to repre-
sent them both in terms of time, health, ammo, a rate of growth/consumption, or some-
thing even more abstract. For example, if our Monster Hunter is low on health and wishes

Combat

Shoot Seek Medic

Monster out of
sight; health

moderately low

Seek Medic

Health is very
low

...

Figure 10.2

In order to implement Seek Medic with two different priorities depending on runtime condi-
tions, we’re limited to duplication within the tree.

13110.  Building Utility Decisions into Your Existing Behavior Tree

to consider rendezvousing with the squad’s medic for a health boost, we can measure the
benefits of receiving treatment in health points gained. However, running frantically to a
safe position is likely to gain the attention of the alien beast, putting us at a risk. If we can
measure the risk by predicting the health we’re likely to lose in transit, both inputs are now
in terms of health points and can be combined and/or compared directly, as in Equation
(10.1). We could simply take their sum, and if the net value is positive, taking this action
has some benefit we can weigh against other actions.

	 RawUtility = HealthGained – HealthLost	 (10.1)

More desirably, by attaching more weight to the amount of health we’ll lose in transit,
we can ensure that we only take this action if we expect to net a significant amount of
health, as seen in Equation (10.2). After all, breaking even would be a waste of the time we
could’ve otherwise spent slaying the creature. We also want a high degree of confidence
that, even if our predictions were overly optimistic, we’re unlikely to end up with a net loss
in health and looking rather boneheaded as a result. Naturally there’s more we could do,
such as apply an exponential scale to HealthLost, which causes the utility to fall off more
rapidly as the risk grows, as in Equation (10.3).

	 Value = HealthGained – (HealthLost × 2.0)	 (10.2)

	 Value = HealthGained – (pow(HealthLost,1.2))	 (10.3)

What happens if we’re unable to represent our input values in such easily relatable units,
and we wish to consider much more than just a net change in health? One way to com-
bat this scenario is to combine the various influences into higher-level, more abstract
values such as “Morale,” “Threat,” etc. The utility of running to visit our medic could also
take into consideration the lost time we could’ve otherwise spent damaging the monster.
Specifically, we could take our formula above, normalize the result, and classify it as
a “Heal” factor. Next, we could generate a second formula representing this time lost,
normalize it, and classify it as “Delay.” We now have two normalized quantities represent-
ing higher-level valuations, which we can combine into a final utility value.

	 Utility
Heal HealPower Delay DelayPower

HealP
=

−() * *
oower DelayPower+

	 (10.4)

I have glossed over the concept of normalization in our example above. However, in
order to logically compare apples to oranges, the normalization process is fundamentally
important, as it essentially “bakes” more complex underlying computations into a sin-
gle usable value. Typically this involves running a raw value (health, time, ammunition,
damage, etc.) through a normalization function to generate a real number from 0 and 1.
Normalization functions are most commonly linear, exponential, or sigmoidal, but can be
of any form. Response curves are an elegant solution in cases where a single formula is not
sufficient for representing the desired normalization, allowing the curve to be broken up

132 Part II.  Architecture

into segments that can be further fine-tuned [Mark 10]. The curve you choose can dramat-
ically impact the result, and thus are often the target of on-the-fly tuning. For this reason,
I’d recommend building these formulas into components you can represent as reloadable
data that you and your designers can tweak. Normalization is a deep subject, and much
wisdom can be discovered in available material. Papers available on GameAI.com, the
GDC Vault, and the reading material referenced herein all provide excellent background
on utility-based AI and behavioral modeling.

10.6 � The Utility Selector

The behavior tree structure lends itself well to extensibility. After all, it’s nothing more
than a tree traversal where the nodes themselves are responsible for and are able to cus-
tomize the expansion of the tree. The tree already features a component for selecting
which branches are taken during execution, namely the selector. To introduce utility-based
selection, we’ll simply create a new specialized type of selector that considers not just the
binary validity of its children, but their relative utility as well. We’ll cleverly dub the new
node type the utility selector.

For simplicity’s sake, let’s consider a vanilla behavior tree implementation. Each
execution pass will traverse the tree until a busy node is encountered, at which point
execution will yield until the next update. When a utility selector executes, it first queries
each child sub-tree for a utility value. If we gather these results first, we can apply any one of
several selection methods. For one, we could simply take the child with the highest utility.
Alternatively, we could sort the children into buckets and conduct a weighted random
selection. Depending on the scenario, we could even apply an unweighted random selec-
tion among the children with utility values over some threshold beyond which options are
considered desirable. All we’re essentially doing is adding utility-gathering to a standard
selector, and using the data to determine priority dynamically. With minimal effort, we’ve
busted wide open what is arguably the biggest drawback of behavior tree-based architec-
tures—static priorities. In fact, we can address our problem with Seek Medic by switching
Combat to a utility selector, as we’ve done in Figure 10.3.

Shoot Seek Medic

...

Reload

Combat as a
utility selector

Combat

Figure 10.3

The Shoot vs. Seek Medic conundrum has been solved by converting Combat to a utility
selector in the original tree.

13310.  Building Utility Decisions into Your Existing Behavior Tree

Listing 10.1.  Pseudocode for a basic selector.

Status Execute()
{
	 if(CurrChild == null) then CurrChild = FirstChild;
	 //Execute all children until we encounter a valid one.
	 while(CurrChild != null)
	 {
		 Status s = CurrChild.Execute();
		 if(s == Busy || s == Done) return s;
		 CurrChild = CurrChild.Next;
	 }
	 return Failed;
}

Listing 10.2.  Pseudocode for a basic utility selector.

Status Execute()
{
	 if(Utility.Size() == 0) then
	 {
		 //Query for child utility values.
		 for(CurrChild = FirstChild; CurrChild != NULL; CurrChild =
CurrChild.Next)
		 {
			 Utility[CurrChild] = CurrChild.CalculateUtility();
		 }
		 //Sort from highest utility to lowest.
		 SortChildrenByUtility();
		 CurrChild = FirstChild;
	 }
	 //Evaluate in utility order and select the first valid child.
	 while(CurrChild != null)
	 {
		 Status s = CurrChild.Execute();
		 if(s == Busy) then return Busy;
		 else if(s == Done) then
		 {
			 Utility.Clear();
			 return Done;
		 }
		 CurrChild = CurrChild.Next;
	 }
	 Utility.Clear();
	 return Failed;
}

134 Part II.  Architecture

10.7 � Propagating Utility

The utility selector simply queries its children for their utility values. Typically only leaf
behaviors will conduct utility calculations, but the utility selector’s children may be of any
node type, including composite nodes or even another utility selector. For utility informa-
tion to intuitively propagate up the tree, we need to override CalculateUtility() for all
composite node types.

For both selectors and sequencers, the simplest method is to return the highest utility
value gathered from its own children. Consequently, in order to gather necessary utility data,
a utility selector must expand all nodes in its child sub-trees, potentially conducting large
quantities of utility calculations in a single pass. This may or may not be a problem depend-
ing on the scale you’re working with, but with complex utility calculations in large behavior
trees on platforms sensitive to random memory access patterns, it’s certainly not ideal.

Thankfully, there are ways to mitigate this problem. For one, we could limit utility
calculations to some interval within our leaf behaviors’ implementations, and return
cached values. Alternatively, we could compute utility values for all of our tree’s leaf nodes
within a completely separate pass, with its own load balancing, leaving only cached values
to be used during calls to CalculateUtility().

10.7.1. Transforming Utility During Propagation
For additional flexibility, nodes can choose to modify utility as it works its way up the tree.
Decorators are a fundamental concept in behavior trees, referring to single-child nodes that
can be used to introduce various useful behavior features. Some common examples include
repeating the child node n times, monitoring a runtime condition, or limiting the child’s
execution time, but they’re a general-purpose tool with infinite potential uses. In fact,
there’s nothing stopping us from creating a utility decorator that applies some transforma-
tion to the utility value of its child. Perhaps it could multiply its child’s utility by some factor
for weighting purposes, or it could run the value through a custom function.

To provide a simple example, let’s say our Reload behavior is a black box that internally
computes a normalized utility value. Under most circumstances, we may choose to com-
pare Reload’s utility directly to that of its siblings. However, we may encounter a case in our
game where we wish to limit Reload’s utility until we’re desperate for ammunition. We can
accomplish this goal by adding a utility decorator above Reload that runs the utility value
through a simple square() or cube() function, as illustrated in Figures 10.4 and 10.5.

10.8 � A Twist on Behavior Trees: Evaluation versus Execution

The behavior tree coupled with this chapter differs from some traditional implementations in
that it separates the idea of tree evaluation from actual execution, which I’ve also done in the
version I use for professional work. Doing so provides opportunity for a few improvements
over a typical behavior tree implementation. One of those opportunities is to more opti-
mally integrate utility-based decisions. Most notably, the utility selector is able to evaluate
its children prior to calculating utility, meaning it must update utility only for valid children.
This can be seen in the accompanying source code’s UtilitySelector implementation.
Furthermore, leaf nodes with costly utility calculations can do the work while verifying
its conditions in Evaluate(), and return a cached value in CalculateUtility().

13510.  Building Utility Decisions into Your Existing Behavior Tree

Another useful benefit is the ability to evaluate the tree independently of an agent’s
behavior execution. While an agent is actively executing behaviors, we can freely evaluate
the tree in parallel without interfering with the executing nodes, and only interject if the
results vary from the presently executing plan.

Evaluating the tree in its entirety also means we can optionally perform a limited
version of look-ahead planning, since we can ensure that an entire plan is valid to the end,
at least at the time of evaluation, before committing any of it to the agent. In cases where
this is not desirable, nodes can still defer validation until they are executed, enabling them
to behave as they would in a typical behavior tree flow.

Shoot Seek Medic

...

Reload

Combat

Cube
Utility

Figure 10.4

We’ve added a decorator to modify Reload ’s standard utility value at execution time.

Cubed Reload Utility

Input Utility

O
ut

pu
t U

til
ity

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

Figure 10.5

Reload ’s utility is now being cubed as it propagates up the tree, delaying the urgency to
reload.

136 Part II.  Architecture

10.9 � Conclusion

Behavior trees and utility are both powerful concepts, made practical by their ease of
implementation and experimentation. If you haven’t done so already, I highly recommend
tinkering with them as a potential solution in your professional endeavors. When combin-
ing utility behavior trees, these two otherwise disjointed techniques can help tackle the
wide variety of behavioral problems found across genres and scopes.

We started with a straightforward behavior tree implementation, and without making
any fundamental changes, we’ve introduced the ability to blend in utility-based decisions
only where desired, preserving the tree’s default behavior elsewhere. While the examples
here are limited in scope for clarity, you’ve hopefully identified cases where this will help
you solve real-world problems you’ve already encountered while applying behavior trees
in practice. Beyond that, hopefully you can make use of utility-based decisions to improve
your characters’ behaviors further.

I am continuing to develop the coexistence of behavior trees and utility for my own
needs in a very demanding commercial project, featuring dozens of unique NPC char-
acters spanning a wide range of classifications. I wanted to share my discoveries thus far,
as the results have been pleasantly surprising in practice. We’ve been able to represent
characters ranging from simple wildlife to autonomous beasts with a vast repertoire of
special abilities to soldiers with unique and obscure capabilities that must effectively emu-
late human players, all with the same behavioral foundation and toolset. For example,
giant beasts can weigh different types of attacks against multiple targets dynamically, and
human soldiers can evaluate and use their deep inventories to cooperatively take down
targets, heal and revive teammates, and combine strategies. The integration of utility
helped tremendously in mitigating complexity since characters can weigh multiple factors
during decision making in a manner that’s intuitive and “just makes sense.” Rather than
fight against the limitations of a single textbook architecture, a simple-to-implement
hybrid has provided a great deal of power without sacrificing usability.

If you have questions, suggestions, or simply want to discuss something nerdy, don’t
hesitate to email bill.merrill at outlook.com.

References

[Brainiac 09] “Brainiac Designer.” http://brainiac.codeplex.com/, 2009.
[Bungie 07] M. Dyckhoff. “Evolving Halo’s Behavior Tree AI.” http://www.bungie.net/images/

Inside/publications/presentations/publicationsdes/engineering/gdc07.pdf, 2007.
[Champandard 08] A. Champandard. “Behavior Trees for Next-Gen Game AI.” http://

aigamedev.com/insider/article/behavior-trees/, 2008.
[Champandard 12] A. Champandard. “Behavior Tree Starter Kit.” http://aigamedev.com/

ultimate/release/behavior-tree-starter-kit-source-release/, 2012.
[Crytek 11] R. Pillosu. “Coordinating Agents with Behavior Trees.” http://staff.science.uva.nl/

~aldersho/GameProgramming/Papers/Coordinating_Agents_with_Behaviour_Trees.
pdf, 2011.

[Mark 09] D. Mark. Behavioral Mathematics for Game AI. Boston, MA: Charles River Media,
2009.

[Mark 10] D. Mark and K. Dill. “Improving AI Decision Modeling Through Utility Theory.”
http://www.intrinsicalgorithm.com/media/2010GDC-DaveMark-KevinDill-Utility-
Theory.pdf, 2010.

