
99

Simulating	Behavior	Trees
A Behavior Tree/Planner Hybrid Approach

Daniel Hilburn

8

8.1	 	Introduction

Game AI must handle a high degree of complexity. Designers often represent AI with
complex state diagrams that must be implemented and thoroughly tested. AI agents exist
in a complex game world and must efficiently query this world and construct models of
what is known about it. Animation states must be managed correctly for the AI to interact
with the world properly. AI must simultaneously provide a range of control from fully
autonomous to fully designer-driven.

At the same time, game AI must be flexible. Designers change AI structure quickly and
often. AI implementations depend heavily on other AI and game system implementations,
which change often as well. Any assumptions made about these external systems can easily
become invalid—often with little warning. Game AI must also interact appropriately with
a range of player styles, allowing many players to have fun playing your game.

There are many techniques available to the AI programmer to help solve these issues. As
with any technique, all have their strengths and weaknesses. In the next couple of sections,
we’ll give a brief overview of two of these techniques: behavior trees and planners. We’ll briefly
outline which problems they attempt to solve and the ones with which they struggle. Then,
we’ll discuss a hybrid implementation which draws on the strengths of both approaches.

8.1.1	 	Behavior	Trees
A behavior tree in game AI is used to model the behaviors that an agent can perform.
The tree structure allows elemental actions (e.g., jump, kick) to be combined to create

8.1	 Introduction
8.2	 The	Jedi	AI	in	

Kinect Star Wars™

8.3	 Now	Let’s	Throw	in	a	Few	
Monkey	Wrenches	…

8.4	 Conclusion

100 Part II. Architecture

a higher level behavior (e.g., flying kick). This higher level behavior can then be treated
as an elemental behavior and used to compose even higher level behaviors (e.g., attack).
Behavior trees also include the concept of constraints, which can be attached to behaviors
at any level in the tree to keep that behavior from being selected when the state of the
world does not match the state required by the constraint (Figure 8.1).

Behavior trees are great at modeling what an AI can do. They allow designers to take
very low-level actions and combine them to create exactly the set of high-level actions that
the designer wants available to the AI. The tree structure easily models any complex design
that is thrown at it. Conveniently, this structure also closely resembles the diagrams that
designers often use to describe the AI, which allows designers and programmers to speak
the same language when discussing AI implementation. The tree structure is also easily
configurable, especially if a graphical design tool is available. This allows the designer to
rapidly iterate and refine the AI design.

Unfortunately, behavior trees are not so great at specifying what an AI should do.
In order for the tree to know which action it should perform, it must have intimate knowl-
edge about the world state, including how other AI or game systems are implemented.
It must also know how each of its behaviors affects—and is affected by—changes in the
world state. This results in a web of dependencies on other systems which are likely to
change. If any of these systems change, you’ll have to update your behavior tree accord-
ingly. This sort of design is far more brittle than we would like. It is much more preferable
that the behavior tree works properly with no modifications even when other systems or
its own internal structure changes. Later, we’ll discuss ways to solve these issues by taking
some cues from AI planners.

KickJumpPunchJumpCrouch

Dragon Punch
Sequence

Flying Kick
Sequence

Attack
Selector

Is Enemy Far
Enough Away

Constraint

Is Enemy
Close Enough

Constraint

Figure	8.1

Example	of	a	behavior	tree.

1018. Simulating Behavior Trees

8.1.2	 	Planners

A planner in game AI is used to create a sequence of elemental actions to achieve some
goal, given the current world state. This sequence of actions is called a plan. The planner
maintains a model of the world state, a collection of all elemental actions available to an
AI, and a goal heuristic. The world state model contains any information about the world
that the heuristic needs. For example, a world state might include a list of available enemies
and their health values. The planner understands how each action affects the world state,
and since a plan is simply a sequence of these actions, the planner also understands how
any plan affects the world state. For example, a kick action deals some damage to an enemy
if it is close by, while a jump action moves the AI closer to an enemy.

The goal heuristic scores a given plan by how much it achieves the heuristic’s goal.
In our example, a combat heuristic would give a high score to a plan that results in enemies
being damaged. So, if the AI is close to an enemy, a high scoring plan might consist of just
a kick action. However, if the AI is too far from an enemy for the kick to deal damage, the
plan will receive a low score. But if we insert a jump action before the kick, now the AI can
move in and attack an enemy, a plan which would receive a high score. With all of these
pieces available, the planner can create plans that achieve high-level goals dynamically,
regardless of the current world state (Figure 8.2).

As you can see, planners are great at managing what an AI should do. They allow
designers to specify high-level goals for the AI by evaluating world states in the planner’s
heuristic, rather than trying design specific behaviors for specific situations. Planners are
able to do this by keeping a very strict separation between what an AI does (actions) and
what the AI should do (heuristics). This also makes the AI more flexible and durable in the
face of design changes. If the jump action gets cut because the team didn’t have time to

Crouch
Self state
Enemy states
Object states

reat states
Etc.

Jump

Crouch

Current Goal
Heuristic

Plan

Resultant
World
State

if (self.hp < = 0)

if (enemy.hp < = 0)
return 0.0f;

return 1.0f;

Current
World
State

Jump

Jump

Punch

Punch

Kick
Resultant

World
State

Planning Algorithm

Actions Goal HeuristicWorld State

Kick

Figure	8.2

Example	of	a	planner.

102 Part II. Architecture

polish the animations, just remove it. The AI will still create the best possible plan for its
current world state. If the kick action suddenly also sends out a shockwave, you only need
to add that to the kick action’s result description. You don’t need to change what the AI
should do just because you changed what it does.

While the flexibility of planners is a great strength, it can also be a great weakness.
Often, designers will want to have more control over the sequences of actions that an AI
can perform. While it is cool that your AI can create a jump kick plan on its own, it could
also create a sequence of 27 consecutive jumps. This breaks the illusion of intelligence our
AI should produce, which is obviously not what we want to happen. There are techniques
to prevent such undesirable plans, but it is difficult to predict all of the situations where a
planner can break down. This, understandably, causes distaste for planners among many
designers, as they often prefer more control over how their characters behave.

This is the classic tradeoff that AI designers and programmers have to deal with con-
stantly: the choice between the fully designed (brittle) AI that behavior trees provide and
the fully autonomous (unpredictable) AI that planners provide. While this battle has been
raging for a while now, it is happily not a binary choice. The space between these two
approaches is where the best solutions lie. There are numerous implementations of behav-
ior trees and planners and many other techniques that attempt to solve this problem, one
of which is our next topic. I’ll quickly describe how this approach works, and then we’ll
dive into how I implemented it on a recent project.

8.1.3	 	A	Behavior	Tree/Planner	Hybrid
The basic premise of the hybrid approach is simple: combine the strengths of behavior
trees and planners to produce an AI system that is flexible and durable in the face of design
changes while allowing the designers full control over the structure of the actions avail-
able to the AI. It uses a world state model and heuristic, just like the planner. However,
where a planner builds sequences of elemental actions dynamically and uses its heuristic
to choose the best one, the hybrid approach uses its heuristic to choose between branches
of a premade behavior tree.

Using the behavior tree allows the designers to have full control over what actions are
available and to easily redesign the structure of these actions while iterating. However, as
we mentioned previously, the behavior tree is usually pretty resistant to design changes,
as changing the internal structure of an action must be reflected in parent selector nodes
back up the tree. This is where our planner half swoops in to save the day.

Remember that our approach also includes a planner’s world state model and a heu-
ristic. We incorporate these into the behavior tree by implementing a simulation step
for each node type. For leaf nodes, this simulation step simply returns a resultant world
state just like elemental actions in the planner system. However, the recursive structure of
the behavior tree allows us to recursively simulate composite behaviors as well. Sequence
nodes simulate each of their child behaviors in sequence and then return the accumulated
result. Selector nodes simulate each of their child behaviors to determine what the resul-
tant world state would be if that node was selected. These results are then fed through the
heuristic function to generate a score for each child behavior. The selector node then uses
these scores to determine which node to select and returns that node’s result as its own.

This design allows us to construct behavior trees that know nothing of their internal
structure. We can make an Attack Selector node that is composed of any number of attack

1038. Simulating Behavior Trees

behaviors, and it will choose the one most appropriate to the current world state with-
out knowing about Dragon Punch or Flying Kick or when they are most appropriate. Any
selector node just needs to simulate each of its children and select the one with the highest
heuristic score. This allows us to change the internal structure of the tree without chang-
ing any code further up the hierarchy. It also allows us to change how a leaf action affects
the world without worrying about updating the entire tree to compensate for the changed
design. This is what we are looking for. The behavior tree structure allows designers to
have full control over what the AI can do, while the planner mechanism handles deter-
mining what the AI should do.

8.2	 	The	Jedi	AI	in	Kinect Star Wars™

We developed this behavior tree/planner hybrid approach while working on the Jedi AI
for Kinect Star Wars™ at Terminal Reality Inc.™, which has been gracious enough to pro-
vide the source code for this article as example material. We only have space to go over a
subset of the system in this article, but the entire system with sample code is provided on
the book’s website (http://www.gameaipro.com). The proprietary engine stuff is stubbed
out, but all of the Jedi AI bits are there if you are interested in looking them over. Without
further ado, let’s make a Jedi!

8.2.1	 	Jedi	Memory
The first thing our Jedi needs is an internal knowledge of the world. This is the world state
model from our previous discussion, which we called the Jedi AI Memory (see Listing 8.1).
It encapsulates everything that our actions can manipulate in the world, including the
Jedi, the Jedi’s current victim, any nearby enemies, and any incoming threats. It also pro-
vides a simulate() method, which allows any action to update the parts of memory that
change over time (e.g., position), and a simulateDamage() method, which allows any
behavior to easily simulate damage dealt to a given enemy.

8.2.2	 	Jedi	Behavior	Tree
Now that we have our world state representation, let’s look at the Jedi’s behavior tree
implementation. All of our behavior tree nodes, which we called Actions, provide
the standard begin/update/end behavior tree node interfaces. These nodes return an
EJediAiActionResult value to their parent from their begin and update operations
to let the parent know the Action’s current status (see Listing 8.2).

The Actions also provide a checkConstraints() method, which iterates over a list
of attached Constraint objects (see Listing 8.3). This method may also be overridden to
allow Action subclasses to check Constraints which are specific to those subclasses. The
Constraint objects provide options to skip the constraint while the action is in progress or
while the action is being simulated, which allow the constraint subclasses a bit of stability.
For example, let’s consider the Distance Constraint attached to the Dragon Punch sequence
to prevent our AI from executing it when the enemy is too far away. If we start the sequence
and the enemy moves far enough away to cause the constraint to fail, the AI will imme-
diately bail out of the sequence, which may not be desirable. It may be more desirable for
the AI to continue executing the sequence and simply miss the enemy. If we set up the
constraint to be skipped while the action is in progress, this is exactly what will happen.

104 Part II. Architecture

Finally, the Actions provide our simulation interface. Each Action contains a simu-
lation summary object which encapsulates everything that our heuristic function cares
about. This summary also contains an EJediAiActionSimResult value, which is
computed by the heuristic and specifies the desirability of the action. Originally, we used
a floating-point number between 0 and 1 to specify this value, but it was very difficult to
get stable, predictable results from the heuristic that way. We simplified the result to the
values in Listing 8.4.

Now that we have specified all of the pieces of an Action, we can bring them all together
in the CJediAiAction class in Listing 8.5. It provides the standard begin/update/end
interface, the simulation interface, and the Constraint interface.

Listing 8.1. The	following	is	an	example	of	the	Jedi	AI	Memory	(world	state)	that	our	AI	
uses	to	keep	track	of	the	world	and	simulate	behaviors.

class CJediAiMemory {
public:
 //simulate this AI memory over a given timestep
 void simulate(float dt);
 //simulate damage to an actor
 void simulateDamage(float dmg, SJediAiActorState &actor);
 //data about my self’s current state
 struct SSelfState {
 float skillLevel, hitPoints;
 CVector pos, frontDir, rightDir;
 } selfState;
 //knowledge container for world entities
 struct SJediAiEntityState {
 CVector pos, velocity;
 CVector frontDir, rightDir, toSelfDir;
 float distanceToSelf, selfFacePct, faceSelfPct;
 };
 //knowledge container for other actors
 struct SJediAiActorState : SJediAiEntityState {
 EJediEnemyType type;
 float hitpoints;
 };
 //victim state
 SJediAiEntityState *victimState;
 //enemy state list
 enum {kEnemyStateListSize = 8};
 int enemyStateCount;
 SJediAiActorState enemyStates[kEnemyStateListSize];
 //knowledge container for threats
 struct SJediAiThreatState : SJediAiEntityState {
 EJediThreatType type;
 float damage;
 };
 //threat state list
 enum {kThreatStateListSize = 8};
 int threatStateCount;
 SJediAiThreatState threatStates[kThreatStateListSize];
};

1058. Simulating Behavior Trees

Listing 8.2. The	returned	results	of	an	Action’s	begin	and	update	operations:

//jedi ai action results
enum EJediAiActionResult {
 eJediAiActionResult_Success = 0,
 eJediAiActionResult_InProgress,
 eJediAiActionResult_Failure,
 eJediAiActionResult_Count
};

Listing 8.3. The	behavior	tree’s	Constraint	implementation.

//base class for all jedi ai constraints
class CJediAiActionConstraint {
public:
 //next constraint in the list
 CJediAiActionConstraint *nextConstraint;
 //don’t check this constraint while in progress
 bool skipWhileInProgress;
 //don’t check this constraint while simulating
 bool skipWhileSimulating;
 //check our constraint
 virtual EJediAiActionResult checkConstraint(
 const CJediAiMemory &memory,
 const CJediAiAction &action,
 bool simulating) const = 0;
};

Listing 8.4. The	behavior	tree’s	simulation	summary,	which	the	heuristic	uses	to	score	
an	Action’s	desirability.

//jedi ai action simulation result
enum EJediAiActionSimResult {
 eJediAiActionSimResult_Impossible,
 eJediAiActionSimResult_Hurtful,
 eJediAiActionSimResult_Irrelevant,
 eJediAiActionSimResult_Cosmetic,
 eJediAiActionSimResult_Beneficial,
 eJediAiActionSimResult_Urgent,
 eJediAiActionSimResult_Count
};
//jedi ai action simulation summary data
struct SJediAiActionSimSummary {
 EJediAiActionSimResult result;
 float selfHitPoints, victimHitPoints, threatLevel;
};

106 Part II. Architecture

Next, we define a Composite Action, the base class of all nodes which are composed of
subnodes (e.g., Sequence or Selector). It is pretty simple, providing a common interface for
accessing the list of child nodes (see Listing 8.6).

Next, let’s look at the Sequence Action (see Listing 8.7). It simply runs all of its child
Actions in sequence, using the method beginNextAction(). If any of the actions fail,
the Sequence Action fails as well. Also, simulating a sequence simulates each of its children,
starting with the currently running child if the Sequence is currently executing. Each child
is simulated using the resultant world state of the previous child’s simulation. After all
children have been simulated, the Sequence computes its own simulation result from the
resultant world state.

The Sequence class provides a few parameters to let you customize how it operates.
One thing that you’ll notice is that we encapsulate the parameters into their own object.
Encapsulating the parameters this way allows a simple memset() to initialize all of the
parameter variables, preventing you from forgetting to initialize a new parameter.

Next up is the most important part of the behavior tree: the Selector (see Listing 8.8).
This class is what decides what the AI will or won’t do. The Selector does this by calling
selectAction(CJediAiMemory *memory), which simulates each of its child behav-
iors using the provided memory to generate simulation summaries for each. It then calls
compareAndSelectAction(), which compares these Action summaries and selects
the Action whose summary has the highest result.

Listing 8.5. The	behavior	tree’s	abstract	base	Action	class.

class CJediAiAction {
public:
 //standard begin/update/end interface
 virtual EJediAiActionResult onBegin();
 virtual EJediAiActionResult update(float dt) = 0;
 virtual void onEnd();
 //simulate this action on the specified memory object
 virtual void simulate(
 CJediAiMemory &simMemory,
 SJediAiActionSimSummary &simSummary) = 0;
 //check my constraints
 virtual EJediAiActionResult checkConstraints(
 const CJediAiMemory &memory, bool simulating) const;
};

Listing 8.6. The	behavior	tree’s	abstract	base	Composite	Action	class.

class CJediAiActionComposite : public CJediAiAction {
public:
 //child actions accessors
 CJediAiAction *getAction(int index);
 virtual CJediAiAction **getActionTable(int *count) = 0;
};

1078. Simulating Behavior Trees

8.2.3	 	Jedi	Simulation
Now that we’ve defined our behavior tree components, let’s have a look at the planner
side of things: the simulation. When we begin simulating an Action, we create a sum-
mary of the current world state. Then, we modify the world state in the same way that the
simulating Action actually would if it were executed. For example, when simulating the

Listing 8.7. The	behavior	tree	Sequence	class.

class CJediAiActionSequence : public CJediAiActionComposite {
public:
 //parameters
 struct {
 //specify a delay between each action in the Sequence
 float timeBetweenActions;
 //allows the Sequence to loop on completion
 bool loop;
 //allows the Sequence to skip over failed actions
 bool allowActionFailure;
 //specify what action result is considered a failure
 EJediAiActionSimResult minFailureResult;
 } sequenceParams;
 //get the next available action in the sequence,
 //starting with the specified index
 virtual CJediAiAction *getNextAction(int &nextActionIndex);
 //begin the next available action in the sequence
 virtual EJediAiActionResult beginNextAction();
};

Listing 8.8. The	behavior	tree	Selector	class.

class CJediAiActionSelector : public CJediAiActionComposite {
public:
 //parameters
 struct SSelectorParams {
 //specify how often we reselect an action
 float selectFrequency;
 //prevents the selected action from being reselected
 bool debounceActions;
 //allow hurtful actions to be selected
 bool allowNegativeActions;
 //if results are equal, reselect the selected action
 bool ifEqualUseCurrentAction;//default is true
 } selectorParams;
 //simulate each action and select which one is best
 virtual CJediAiAction *selectAction(CJediAiMemory *memory);
 //compare action simulation summaries and select one
 virtual int compareAndSelectAction(
 int actionCount, CJediAiAction *const actionTable[]);
};

108 Part II. Architecture

SwingSaber Action, we apply damage to the victim and run the world state simulation for-
ward by the same amount of time that it takes to swing our lightsaber. After the simulation
is complete, we create a summary of the resultant world state and compute the desirability
of this new state compared to the summary of the initial state (see Listing 8.9). This final
summary is passed back to the parent Action and will be used by the behavior tree when
selecting this Action from a set of other Actions.

The real meat of this system is the planner heuristic, where we compute the simula-
tion result (see Listing 8.10). This function represents our AI’s current goal. In this case,
the Jedi’s only goal was to avoid damage and threats while causing damage to his victim.
The heuristic does this by classifying an Action’s post-simulation world state as one of the
EJediAiActionSimResult values (impossible, hurtful, irrelevant, beneficial, etc.).

Now that we’ve defined how our AI’s simulation result is computed, let’s have a look at
how it fits into an actual simulation step: the SwingSaber Action (see Listing 8.11).

8.3	 	Now	Let’s	Throw	in	a	Few	Monkey	Wrenches	…

Game development is an iterative process, and your system will change many times
between conception and final product. Even when your system isn’t being redesigned,
design changes in other systems can change how your implementation behaves. So, it is
imperative that our system handles these changes well. As we discussed earlier, the whole
point of our hybrid system is to provide flexibility to handle these changes with as few
changes as possible. So let’s see how well it does by looking at some design changes from
Kinect Star Wars™.

Listing 8.9. This	 shows	 how	 we	 condense	 a	 Jedi	 Memory	 object	 into	 a	 Simulation	
Summary.

//condense the specified memory into a summary
void setSimSummaryMemoryData(
 SJediAiActionSimSummary &summary,
 const CJediAiMemory &memory);
//initialize a summary from the specified memory
void initSimSummary(
 SJediAiActionSimSummary &summary,
 const CJediAiMemory &memory)
{
 summary.result = eJediAiActionSimResult_Impossible;
 setSimSummaryMemoryData(summary, memory);
}
//compute the resultant world state summary
void setSimSummary(
 SJediAiActionSimSummary &summary,
 const CJediAiMemory &memory)
{
 summary.result = computeSimResult(summary, memory);
 setSimSummaryMemoryData(summary, memory);
}

1098. Simulating Behavior Trees

8.3.1	 	Jedi	Skill	Level
Kinect Star Wars™ featured three different types of Jedi: Master Jedi, low-level Padawan Jedi,
and the second player Jedi. Originally, these were all implemented using the same design.
Later, the design team added the caveat that each Jedi should have a skill level to specify
how competent he was at combat. This would allow us to make a Master Jedi, like Mavra
Zane, more capable in a fight than your Jedi buddy or the other Padawan Jedi in the game.

We implemented this by having the skill level specify how quickly the Jedi could defeat
each enemy type. This allowed Mavra to dispatch enemies quickly, while the Padawan Jedi
took much longer. To make this work, we added a victimTimer member to our world
state to track how much time had elapsed since we acquired our current victim. Then, we
added a statement to the heuristic to discourage killing the victim before timer specified
by the current skill level had expired (see Listing 8.10).

That was it. We didn’t have to change any behavior tree Actions or simulation code.
The heuristic was already aware if a given action would kill the victim, because we were

Listing 8.10. The	planner	heuristic,	which	computes	the	simulation	result.

//determine the result of a simulation by comparing a summary
//of the initial state to the post-simulation state
EJediAiActionSimResult computeSimResult(
 SJediAiActionSimSummary &summary,
 const CJediAiMemory &memory)
{
 //if we are more hurt than before, the action is hurtful
 //if we are dead, the action is deadly
 if (memory.selfState.hitPoints < summary.selfHitPoints) {
 if (memory.selfState.hitPoints <= 0.0f) {
 return eJediAiActionSimResult_Deadly;
 } else {
 return eJediAiActionSimResult_Hurtful;
 }
 //if our threat level increased, the action is hurtful
 } else if (memory.threatLevel > summary.threatLevel) {
 return eJediAiActionSimResult_Hurtful;
 //if our threat level decreased, the action is helpful
 //if it decreased by a lot, the action is urgent
 } else if (memory.threatLevel < summary.threatLevel) {
 float d = (summary.threatLevel - memory.threatLevel);
 if (d < 0.05f) {
 return eJediAiActionSimResult_Safe;
 } else {
 return eJediAiActionSimResult_Urgent;
 }
 //if victim was hurt, the action is helpful
 } else if (memory.victimState->hitPoints < summary.victimHitPoints) {
 return eJediAiActionSimResult_Beneficial;
 }
 //otherwise, the sim was irrelevant
 return eJediAiActionSimResult_Irrelevant;
}

110 Part II. Architecture

simulating each action instead of hard-coding the selection logic into the selectors. So the
planner held up its end of the bargain, allowing us to change goals without modifying
any Actions.

8.3.2	 	Jedi	Mistakes
Another wrinkle that arose was the idea of mistakes. It isn’t realistic for the Jedi to always
defeat their enemies; they should sometimes fail. Also, the designers wanted the Jedi AI
to demonstrate what not to do against various enemy types. However, our entire system
is built on the idea that the Jedi will choose the best option. We could make a custom
selector that chooses the worst option instead of the best option, but it would still return a
negative simulation result to its parent, which would then not select it to run.

At first this seemed like a flaw in the system, until we thought about what defines a
“mistake.” Obviously, the Jedi will always try to choose the best Action available. But what
if they made a miscalculation and chose an Action which actually was hurtful? This would
pass correctly back up the behavior tree and the hurtful Action would then be chosen.
In order to create this miscalculation, we needed to insert incorrect information into the
simulation step for any Action. Rather than add these special cases to each Action, we
added a special Action called a FakeSim. The FakeSim Action is a special type of Composite
Action called a decorator, which wraps another Action to add extra functionality to it. The
FakeSim was responsible for adding incorrect information to the wrapped Action’s simu-
lation step by modifying the world state directly. For example, there are some enemies
that have a shield which makes them invulnerable to lightsaber attacks. If we want a Jedi
to attack the enemy to demonstrate that the enemy is invulnerable while the shield is up,

Listing 8.11. The	SwingSaber	Action’s	simulation	method.

void CJediAiActionSwingSaber::simulate(
 CJediAiMemory &simMemory,
 SJediAiActionSimSummary &simSummary)
{
 initSimSummary(simSummary, simMemory);
 EJediAiActionResult result;
 for (int i = data.swingCount; i < params.numSwings; ++i)
 {
 //simulate a single swing’s duration
 CJediAiMemory::SSimulateParams simParams;
 simMemory.simulate(
 kJediSwingSaberDuration, simParams);
 //apply damage to my target
 simMemory.simulateDamage(
 simMemory.selfState.saberDamage,
 *simMemory.victimState);
 //if my target is dead, I’m done
 if (simMemory.victimState->hitPoints <= 0.0f)
 break;
 }
 setSimSummary(simSummary, simMemory);
}

1118. Simulating Behavior Trees

we can wrap the SwingSaber Action with a FakeSim Decorator which lowers the victim’s
shield during the simulation step. Then, the SwingSaber simulation will think that the Jedi
can damage the enemy and give it a good simulation result. This would allow SwingSaber
to be chosen, even though it won’t actually be beneficial.

This ended up being a great way to handle this design requirement. It allows us to insert
specific mistakes anywhere in the system without modifying any of the Action classes.
And it allows us to avoid writing special case code to handle inserting these mistakes.
We simply insert a bit of incorrect domain knowledge into the system, which reflects how
people make mistakes in real life. So the behavior tree held up its end of the bargain, allow-
ing us to easily design very specific Action sequences that the planner couldn’t handle on
its own.

8.4	 	Conclusion

We’ve discussed some of the strengths and weakness with both behavior trees and plan-
ners. Behavior trees are great at allowing designers to define exactly what an AI can do,
and planners are great at allowing designers to easily specify what an AI should do. And
we’ve discussed how we can utilize a hybrid approach to realize the strengths of both
approaches. Finally, we looked at how this system was used in Kinect Star Wars™ to create
the Jedi AI. This approach provides designers with all of the control of a behavior tree
and all of the durability and flexibility of a planner, allowing it to handle design changes
smoothly and with few changes to the code. And that is really the whole point.

