
93

Real-World	Behavior	Trees	in	Script
Michael Dawe

7

7.1	 	Introduction

While there are many different architectures for an AI programmer to pick from, behavior
trees are one of the most popular algorithms for implementing NPC action selection in
games due to their simplicity to code and use. They are quick to implement from scratch
and can be extended to add additional features or provide game-specific functionality as
needed. While not as simple as a finite-state machine, they are still simple enough to be
easily debugged and designed by other team members as well, making them appropriate
to use on games with a large team implementing the behaviors.

On Kingdoms of Amalur: Reckoning, we wrote a behavior tree system that used behav-
iors written in script, while the algorithm itself was processed within the C++ engine.
This allowed the design team to have rapid iteration on the behaviors while the program-
ming team retained control over the algorithm features and how the engine processed
the behavior tree. Here, we present a functional implementation of a simplified version of
the algorithm (available on the book’s website http://www.gameaipro.com). It can be used
“as is” or extended for a more demanding application. Additionally, we discuss some of the
pros and cons we found using such a system in the development of Reckoning.

7.2	 	Architecture	Overview

The behavior tree algorithm implemented in the sample code is straightforward and
assumes only the knowledge of a tree data structure. Each node in the tree is a behavior,

7.1	 Introduction
7.2	 Architecture	Overview
7.3	 Defining	Script	Behaviors
7.4	 Code	Example

7.5	 Integration	into	a	
Game Engine

7.6	 Script	Concerns
7.7	 Enhancements
7.8	 Conclusion

94 Part II. Architecture

with some precondition defining when that behavior should run and an action defining
what the agent should do to perform that behavior. A root behavior is defined to start at,
with child behaviors listed in order. Starting from the root, the precondition of the behav-
ior is examined, and if it determines that the behavior should run, the action is performed.
The algorithm would continue with any children of that behavior. If a precondition deter-
mines that a behavior should not be run, the next sibling at that behavior is examined in
turn. In this manner, the algorithm recurses down the tree until the last leaf behavior is
run. The pseudocode for the algorithm is shown in Listing 7.1. This process on the behav-
ior tree can be run as often as needed to provide behavior fidelity, either every frame or
considerably less often for lower level-of-detail.

In the code sample, we define classes for each Behavior, as well as a BehaviorMgr
to keep track of each Behavior loaded. The BehaviorTree is its own class as well, so
that we can define multiple trees that use the same behaviors and process them separately.
Since each BehaviorTree is made up of a list of Behaviors, multiple characters
 running the same behavior tree can run separate instances of the BehaviorTree class.

7.3	 	Defining	Script	Behaviors

There are several compelling reasons to define behaviors in script. First, when develop-
ing intelligent agents, quick iteration is often a key factor in determining final behavior
 quality. Having an environment where behaviors can be written, changed, and reloaded
without restarting the game is highly desirable. Another reason to use a scripting language
might be to take advantage of your team. On Reckoning, a large percentage of the design
team had a programming background, making it feasible for them to implement behav-
iors in script without much programming input or oversight. While some programming
time was needed to support the creation of new ways to pass information back and forth
between the C++ engine and script, overall the time spent by engineers on the behavior
creation process was much less than it would have been otherwise.

In order to write our behavior tree to take advantage of behaviors written in script, we
first need to integrate a scripting language to a C++ engine. For Reckoning, we chose Lua,
a popular scripting language within the games industry. Since Lua is written in C, it can

Listing 7.1. Pseudocode	for	running	the	behavior	tree.	Called	with	the	root	node	to	
start,	this	recursively	determines	the	correct	branch	behaviors	to	run.

process_behavior_node(node)
 if (node.precondition returns true) {
 node.action()
 if (node.child exists)
 process_behavior_node(node.child)
 } else {
 if (node.sibling exists)
 process_behavior_node(node.sibling)
 }

957. Real-World Behavior Trees in Script

easily be plugged into an existing engine, and since its source is distributed for free, it can
even be modified as necessary and compiled into the game.

Lua defines a native data structure—a table—which is analogous to a dictionary or
map in other languages. For each behavior, we defined a table with that behavior’s name
(to avoid name collisions). The members of the table were functions named “precondition”
and “behavior.” With known names, the C++ algorithm could look for and call the appro-
priate functions at the correct times.

7.4	 	Code	Example

Besides the behavior classes, the code sample used in this article also defines a LuaWrapper
class to manage the Lua integration, and an NTreeNode class as a generic tree class. In
main(), a LuaWrapper is created and used to load all *.lua files in the Scripts directory, where
every *.lua file is a well-defined behavior. While the LuaWrapper::load_all_scripts()
function is written for Windows systems, all operating-system specific calls are in that
function, so porting to a different system should be confined to that function.

From there, a test behavior tree is created based on the script files loaded. Using the
add_behavior_as_child_of() function, an entire behavior tree can be created
from scratch. Finally, the tree is run using process(), which simply starts the recursive
function at the root of the behavior tree and tests each behavior in turn.

7.5	 	Integration	into	a	Game	Engine

While functional, the sample provided holds more power if plugged into a full game
engine. The Behavior and BehaviorTree classes can be taken “as is” and extended
as needed. The LuaWrapper could also be taken as written, but ideally an engine would
include functionality for reloading the Lua state at runtime, in order to take advantage of
being able to rewrite behaviors and test them without restarting or recompiling the game.

Each agent can define its own BehaviorTree, either in code or as some sort of data
file. For Reckoning, behavior trees were assets just as behaviors were, so trees had their own
manager and data definition for ease of sharing among multiple different types of NPCs.
If the behaviors are written generically enough, many different agents could share not only
the behaviors, but even whole trees.

7.6	 	Script	Concerns

While the benefits of having script-defined behaviors are manifest, there are particular
concerns that should be kept in mind if using the approach.

Perhaps the first thing to come to mind for game programmers is performance. While
written in C, Lua is still a garbage-collected language, and has a floating-point representa-
tion for all numbers within the Lua environment. With this in mind, Reckoning took a few
precautions to safeguard the framerate of the game from poor script performance.

First, since Lua can be compiled directly into the game engine, all Lua allocations can
be routed through whatever allocation scheme the engine implements, which means it’s
possible to take advantage of small-block allocators to avoid general fragmentation issues.
By preemptively garbage collecting at known times, it’s possible to prevent the Lua garbage

96 Part II. Architecture

collector from running anytime it would be disadvantageous. In particular, Reckoning ran
the garbage collector every frame at a predetermined time to avoid mid-frame collection
that can occur when left up to Lua.

To further increase performance when in Lua, the source was changed to make Lua’s
internal number system use traditional integers instead of floating-point numbers. This
had a few consequences for scripters, the most obvious of which was dealing with integers
for percentages, i.e., the number “56” instead of “0.56” for 56%. Once this was well com-
municated, it was merely a matter of scripting style.

Trigonometry and geometry became impossible to complete within Lua, though, and
while this is precisely the outcome planned for, it was a larger workflow change. Since the
point was to avoid any complex math in script, it was planned that anytime a behavior or
other script needed a trigonometric or geometric problem solved, it would ask the C++
engine for an answer. This meant that while most of the mathematical calculation was
kept out of script, more programmer time was required to write and test the necessary
functions for script any time a new result was needed.

In general, though it was still a positive time gain to have designers writing more script
behaviors, programmers could not be entirely hands-off during behavior development.
After Reckoning completed, both the designers and programmers agreed that more formal
engineering oversight was needed in the scripting process; so while a majority of behav-
iors in the game were written by designers, the team thought more collaboration would
be warranted. A suggested workflow was to have members of the engineering team code
review script check-ins, though periodic reviews would also work.

7.7	 	Enhancements

While the sample can be used “as is,” part of the appeal of a behavior tree is implementing
extensions as needed for your own project. There are a wide variety of additional features
that can be added to this base tree. Here are some examples used on Reckoning.

7.7.1	 	Behavior	Asset	Management
Although this example just loads files in a given directory, if the behavior tree system
needs to interact with a large number of behaviors, it will become easier to have some
sort of behavior asset manager to load and track each behavior. While initially this simply
shifts the responsibility of loading the behaviors to the new asset manager, the manager
can add new functionality by creating a unique ID for each behavior. Trees can refer-
ence behaviors by this ID, while the manager can enforce uniqueness of names among
behaviors. By having a centralized place to do error-checking on the scripts, finding and
recovering from data errors can be handled more easily.

Having an asset manager for your behaviors has other advantages, as well. While this
sample creates the trees as part of the program, ideally trees are defined by some data file
that’s read in when the game starts. This allows the development of external tools to create
trees or even define trees containing other trees.

7.7.2	 	Behavior	Definition	Extras
As noted, our behavior definitions are simply tables in Lua, which are analogous to
dictionaries or maps. Tables can hold arbitrary data, a fact this implementation takes

977. Real-World Behavior Trees in Script

advantage of by storing functions within our behavior table. Since there’s no limit on the
data, though, we can also store any data with the behavior we want besides just the precon-
dition and behavior functions themselves. For example, a behavior could store a separate
table of parameterized data for use within the behavior, or data for use by the behavior
tree. In Reckoning, behaviors specified a hint to the behavior-level-of-detail system based
on how important it was that they run again soon. For example, creatures running combat
behaviors had a higher probability of getting to process their tree than creatures merely
walking to a destination.

7.7.3	 	Behavior	Class	Improvements

The Behavior class itself can be improved to allow for faster processing of the tree. In this
example, behaviors must define a precondition function and a behavior function, or else
the tree will fail to process correctly. It is possible to use the lua_isfunction() family
of functions to determine if the behavior or precondition functions exist before calling
them. While the behavior tree could push the known function location onto the Lua stack
to determine its existence every frame, a better solution is one where the behavior itself
checks and tracks what functions are defined when it first loads. Then the behavior tree
can call or skip a behavior function call based on a flag within the behavior itself without
incurring a significant performance cost while processing the tree.

7.7.4	 	Previously	Running	Behaviors

Often it is useful when debugging a behavior tree to know which behaviors were running
on a given frame. The behavior tree can keep track of which behaviors were running on
the last frame or on an arbitrary number of frames prior. The smallest way to do this is by
using a bit field. By taking advantage of the fact that a behavior tree is laid out in the same
way every run, we can assign the first position in the bit field to the root, then the next its
first child, followed by any children that child behavior has before moving on similarly.
Algorithmically, we can then simply mark the behaviors to be run while checking behav-
ior preconditions, then save that bit field off when we are finished processing.

In fact, a behavior tree can be compressed considerably using this technique. For
 example, instead of storing the behaviors in a tree, once the behaviors are loaded by
an asset system and given a unique id, the BehaviorTree class can store an array of
 pointers to the behaviors, and the tree can store indices into that array, which simplifies
the bit field approach.

7.7.5	 	on_enter/on_exit	Behavior

Once a list of previously running behaviors is established, a behavior can define a func-
tion for the first-time setup or a cleanup function for when it ceases running. As a part of
Reckoning, we defined on_enter and on_exit functions for each behavior. To imple-
ment these, the behavior tree class needs to track over subsequent process() calls which
behaviors were running the previous time, as above. If a list of behaviors run the previ-
ous tick is kept, then any behavior in the previous list but not in the current one can call
its on _exit function before new behaviors are started. On_enter and behavior
 functions are then called in order.

98 Part II. Architecture

7.7.6	 	Additional	Selectors
The algorithm can also be extended by changing the way behaviors are selected. Some
 different selectors used on Reckoning included nonexclusive, sequential, and stimulus
behaviors. Each of these slightly changed how behaviors could be selected to run or altered
the logic of how the tree progressed after running a behavior.

Nonexclusive behaviors run as normal behaviors do, but the tree continues checking
siblings at that tree level after doing so. For example, a nonexclusive behavior might play
a sound or set up some knowledge tracking while leaving it to other sibling behaviors to
determine an actual action.

Sequential behaviors run each of their children in order so long as their precondition
returned true. An example might be a behavior to perform a melee attack, with children
to approach the target, launch the attack, and then back away. So long as the parent melee
behavior returns true, the tree will execute the child behaviors in order.

Stimulus behaviors are a way of hooking the behavior tree up to an in-game event
system so that agents can define reaction behaviors to events happening around them.
Each stimulus behavior defines a particular stimulus, such as spotting the player or hear-
ing a sound, which it can react to. Stimulus behaviors are a way of specializing a com-
monly used precondition. In Reckoning’s implementation, stimulus behaviors were treated
exactly as normal behaviors with a separate precondition function that would check for
a defined stimulus on the character running the tree. This specialized precondition also
handled cleanup of the stimulus when finished.

Any kind of selection algorithm can work with a behavior tree, which is one of the
major strengths of the system. For example, a utility-based selector could pick among its
children based on their utility scores, or a goal system could be implemented that picks
children based on their postconditions. While any selection algorithm can be made to
work, often they will change how the behaviors must be defined, either through additional
functions or data needed by the selector. The flexibility of using any kind of selector must
be weighed carefully against the time and cost of implementing each different algorithm.

7.8	 	Conclusion

Behavior trees are a flexible, powerful structure to base an agent’s decision-making
 process around, and utilizing script is one method to drive faster iteration and greater
ease of behavior authoring. Being able to edit and reload behaviors at runtime is a huge
advantage when refining and debugging behaviors, and having a data-driven approach to
behavior creation opens up the process to a much wider group of people on the team, help-
ing production speeds. Additionally, with the behavior tree algorithm being as flexible
as it is, improvements and game-specific features can be implemented quickly, and with
behaviors implemented in script, each can be updated to take advantage of the new fea-
tures quickly. Changing their parameters can be done without recompiling or restarting
the game, so rapid testing of these features can be accomplished.

If a behavior tree is a fit for a game, having script support for implementing the behav-
iors provides tremendous flexibility. Though careful analysis of the performance costs is
necessary any time a scripting language is used, strategies can be employed to minimize
the impact while maintaining the advantages of having a rapid iteration environment for
behavior development.

