
61

5
Structural Architecture—
Common Tricks of the Trade
Kevin Dill

5.1 � Introduction

When discussing game AI, developers often get hyper-focused on advocating for a par-
ticular approach or a particular architecture, but many of the problems that make AI 
programming so hard appear regardless of the architecture you use, and many of the 
most common solutions have been reinvented time after time in architecture after archi-
tecture. For example, we can use hierarchy to divide up the AI logic, simplifying both 
configuration and execution. We can use option stacks to allow one option to temporarily 
suspend another, without changing the overall plan of attack. We can use a blackboard 
to share information and ideas between AI components or between characters. We can 
move the intelligence into the objects, the terrain, the abilities, or the events in order to 
more logically divide the code and data, and to improve our ability to extend the game. 
(Some games, such as The Sims franchise, have used this approach to ship downloadable 
content or even entire expansion packs without a change to the executable.) Finally, we 
can use modularity to extract reusable pieces of AI logic, thus simultaneously eliminating 
duplicate code and enabling the AI’s author to think at a coarser level of granularity.

In the remainder of this chapter we describe each of these ideas. The intent is to provide 
enough information to paint the big picture, to spark new ideas and solutions to problems 
that you, the reader, might face, but not to dig deeply into the technical details of any given 
solution. For that, we refer you to the bibliography and the references contained therein.

5.1	 Introduction
5.2	 Definitions
5.3	 Common Architectures
5.4	 Hierarchical Reasoning

5.5	 Option Stacks
5.6	 Knowledge Management
5.7	 Modularity
5.8	 Conclusion



62 Part II.  Architecture

5.2 � Definitions

The ideas that we will address in this paper are fairly universal, but there aren’t necessarily 
universal terms to describe them—and in some cases, terms mean one thing to one person 
and something different to another. As a result, this section will define terms that might 
not be clear, so that we can have a common vocabulary to work with as we forge ahead.

The AI architecture is the underlying code—typically in C++—that controls the process 
by which the AI evaluates the situation and makes a decision. Several examples of archi-
tectures will be given below, and the other articles in this section describe many of them 
in detail.

A configuration is the behavioral specification that maps from specific sensory data 
(i.e., specific inputs) to specific decisions or actions (i.e., specific outputs). For example, 
the configuration for a First-Person Shooter (FPS) character would contain all of the logic 
necessary to decide what that character should do at each point in the game—e.g., should 
it attack, should it run away, should it reload its weapon, and so on. The configuration is 
built on top of the architecture and usually specified in data (i.e., XML or similar).

We will often refer to the thing that an AI controls as the character. Not all AIs control 
single characters—for example, you might be working on the AI for an opposing player 
in a strategy game (which controls many characters), or the AI for a missile in a flying 
game, or even an AI that controls some aspect of the user interface. You will also hear 
AI-controlled entities referred to as agents, enemies, or simply as AIs. The generic term 
character, however, is a convenient term, and most AI does apply to characters, so we will 
stick with it in this chapter.

It is often the case that a character will contain more than one decision-maker. For 
example, a character might have one algorithm that selects which weapon to use, another 
that selects the target to shoot at, and a third that decides what emotion he should display. 
We refer to these decision makers as reasoners. Reasoners may have clear cut responsibili-
ties (such as those described above), or they may be organized in a more ad hoc fashion 
(such as the selectors in a behavior tree [Isla 05]).

Similarly, we will refer to the things that reasoners choose as options. A reasoner func-
tions by first evaluating the situation, and then selecting one or more options to execute. 
When a reasoner picks a new option and starts executing it, we say that it has selected the 
option, and when it stops executing an option we say that the option is deselected. These 
options might be actions (that is, physical things that the AI does), but they might also be 
more abstract. For example, a character’s emotional reasoner might simply change the AI’s 
internal state (perhaps by setting an enumerated value to the appropriate state—eHappy, 
eSad, eAngry, etc.—or by assigning an intensity value to each emotion) so that other 
reasoners can then select appropriate actions (smiling, frowning, attacking the player, etc.) 
based on that state.

5.3 � Common Architectures

Although the techniques described here are intended to be architecture-agnostic, it is often 
useful to discuss a specific architecture when describing them. All of these architectures 
are described in detail elsewhere, so we give just a very high level definition of each one.



635.  Structural Architecture—Common Tricks of the Trade

Scripting is perhaps the most basic architecture possible. In it, the designer or AI pro-
grammer specifies the sequence of options that the AI will select and when they will be 
selected (e.g., wait 48 seconds, and then spawn three units and attack the player). Scripts 
may include very simple sensory input, such as trigger zones, but in general the idea is that 
every decision is fully specified by the AI’s author [Berger et al. 02].

Finite-state machines (FSMs) were once the most popular game AI architecture, but 
have been largely replaced by behavior trees in recent years. An FSM is a collection of states 
and transitions. The states represent the options that the reasoner can select, whereas the 
transitions represent the conditions under which the AI will change from one state to 
another. For example, a very simple first-person shooter (FPS) character might have four 
states: Attack, Flee, Reload, and Search for Enemy. The Attack state would contain transi-
tions to Flee (which fires if the character is nearly dead), Reload (which fires when the 
character is out of ammo), and Search for Enemy (which fires when the character loses 
sight of the enemy) [Buckland 05, Rabin 00].

A rule-based AI is one that consists of a sequence of predicate-option pairs. The AI 
evaluates the predicate for each rule in order. When it gets to a rule whose predicate is 
true, it executes the option for that rule and stops evaluating additional rules. Thus, a 
rule-based AI for our simple FPS character would have four rules. The first would make 
it flee if its health is low. The second would make it reload if it is out of ammo. The third 
would make it attack the player if the player is in sight. Finally, the fourth would search for 
the player [Millington et al. 09a, Nilson 94].

A utility-based AI uses a heuristic function to assign a floating-point value (typically 
called a weight, priority, or utility) to each option. It then selects the option to execute 
based on those values—for example, by taking the option with the highest utility, or 
by assigning a weight to each option and using that to guide the probability of random 
selection. Our simple FPS character would still have the same four possible options, but 
now it would decide which one to do by evaluating the heuristic function for each option 
and using the resulting values to guide its final selection [Mark 09, Dill 06, Dill et al. 12a, 
Dill 12c].

Planners such as goal-oriented action planners (GOAP) or hierarchical task-network 
(HTN) planners build a sequence of options that will get them to some goal state. For 
example, our FPS character might have the goal Enemy Dead. It would search through its 
possible options and the ways in which they can change the state of the world in order to 
find a sequence of options which will get it into the goal state. That plan might be some-
thing like Search for Enemy–Attack–Reload–Attack (if it expects two magazines of ammo 
to be enough to get the job done). Planners typically have the ability to replan if the situ-
ation changes. So if our character finds itself nearly dead then it might replan with a new 
goal, such as Don’t Die. This new plan might have only a single option: Flee [Orkin 04, 
Gorniak et al. 07].

The behavior tree (BT) architecture is a bit of a special case, because it is an architec-
ture that can contain other architectures. A BT is a tree of selectors, each of which makes 
a single piece of the overall decision. In their original formulation [Isla 05], the selec-
tors were all exceedingly simple and not really architectures in their own right. However, 
more recent work has discussed the ability to use nearly any architecture in a selector 
[Dill 11a], making the behavior tree more of a framework (or meta-architecture) than an 
architecture in its own right.



64 Part II.  Architecture

5.4 � Hierarchical Reasoning

The difficulty of building an AI configuration generally scales worse than linearly with 
the size of the configuration. In other words, the more situations your AI can handle, the 
more things it takes into account, the more options it contains, etc., the more complex it 
is to add yet another of one of those things. The reason for this should be fairly intuitive. 
Whenever you add something new to your AI you need to put at least some effort into 
considering how that new thing interacts with each thing already in existence. Thus, the 
cost of adding a new thing increases the more things you have.

The severity of that increase depends in large part on the architecture you are using. 
FSMs, for example, scale exponentially because the number of transitions that is expo-
nential on the number of states. This becomes unmanageable very quickly. This is one 
of the principal reasons that FSMs have largely passed out of use for complex problems. 
Utility-based AI, on the other hand, only requires you to balance the heuristic functions 
appropriately, while rule-based AI typically just requires you to place your new rule at the 
proper place in the list. With that said, even a rule-based AI will become brittle when it con-
tains hundreds or thousands of rules (which is not an unreasonable size for many games).

One common way to address this challenge—an approach that has been applied to 
nearly every architecture, both in games and in academia—is to break the decision mak-
ing up hierarchically. That is, have a high-level reasoner that makes the big, overarching 
decisions, and then one or more lower-level reasoners that handle implementation of the 
higher-level reasoners’ decisions. For example, a high-level reasoner might decide whether 
to execute a daily schedule of ambient tasks (e.g., get up, get breakfast, go to work, etc.), 
start a conversation with the player, go into combat, and so forth. Each of those options 
would contain another reasoner, which decides how to go about accomplishing the goal.

The advantage here is that the complexity of AI configuration scales worse than linearly 
on the number of options in a particular reasoner. To give a sense of the relevance, imagine 
that the cost of configuring the AI is O(n2) on the number of options (as it is for FSMs). 
If we have 25 options, then the cost of configuring the AI is on the order of 252 = 625. On 
the other hand, if we have five reasoners, each with five options, then the cost of configuring 
the AI is only 5 × (52) = 125. Conceptually, this makes sense. When we add a new option, 
we only need to consider how it relates to other options within the same reasoner—which is 
much simpler than comparing it to every other option anywhere in the AI.

Examples of this approach abound, from hierarchical FSMs [Millington et al. 09b] to 
HTN planners [Gorniak et al. 07] and GOAP implementations [Cerpa et al. 08] to strategy 
game AIs that break the opposing player AI into command hierarchies [Pittman 08]. 
Behavior trees are perhaps the archetypical example—a BT is really nothing more than a 
hierarchical infrastructure in which you can place whatever sorts of reasoning architec-
tures best encapsulate the decisions to be made.

5.5 � Option Stacks

Most reactive AIs function by evaluating the situation very frequently (often every frame), 
and deciding what is the best thing to do right at that particular moment. They may have 
a history of past decisions that guides their choices, they may even have some greater plan 



655.  Structural Architecture—Common Tricks of the Trade

that they’re following, but decisions are made moment-to-moment. This is what allows the 
AI to respond if the situation changes.

Of course, we do want options to be persistent. That is, we don’t want the AI to be con-
stantly flip-flopping between different decisions—attacking on one frame, fleeing on the 
next, and then attacking again on the frame after. Or, for another example, attacking with 
a shotgun, and then a flamethrower, and then right back to the shotgun after only a frame 
or two, switching weapons too fast to even get a shot off. That sort of indecisiveness makes 
the AI look stupid, even if there is a good reason at that moment for the decision being 
made. As we discussed in an earlier chapter [Dill 13], looking stupid is the single worst 
thing that an AI can do. It breaks the player’s suspension of disbelief—that is, their immer-
sion in the experience. As a result, most architectures have some form of inertia built in, 
which keeps the AI doing the same thing unless there is a good reason for the change.

When the AI does change options, one of two possible situations pertains. In most 
cases, the AI’s decision is lasting—that is, it has decided to stop the old option and start 
a new one, and it’s not expecting to go back to what it was doing before. For example, 
if the AI is in a fight and it kills one enemy, now it can pick a new enemy to attack (or pick 
something else to do if the fight is over). The decision can be lasting even if the AI wasn’t 
done with the previous option. For example, when an AI decides to flee, that’s a lasting 
decision, even though it typically happens before the AI finishes its attack. Regardless, the 
AI has made a deliberate decision to stop doing what it was doing and do something else 
instead. In this case, we should stop applying inertia to the deselected option, and in fact 
may even want to apply a cooldown which will prevent us from returning to it for a short 
period of time.

There are situations, however, when the AI needs to react to an immediate need or 
opportunity, but once that reaction is complete it should return to its previous option. 
For example, if an AI needs to reload, it should return to the same action (presumably 
firing a particular weapon) when it finishes reloading. It wouldn’t make sense to reload 
your shotgun, only to then immediately switch weapons to a flamethrower (or decide to 
flee). That’s not to say that the AI can’t change its mind, but it should have to overcome the 
option’s inertia to do so, just as if that option were still executing. Thus, we might switch 
to the flamethrower immediately after reloading the shotgun—but only if we suddenly 
spotted some new enemy who is highly vulnerable to fire.

One common trick which has been applied to a great many architectures is to have a 
stack of currently executing options. This stack is sometimes referred to as a state stack 
[Tozour 04], or a goal stack [Cerpa 08], or subsumption [Heckel et al. 09], depending on 
the underlying architecture, but we will simply call it an option stack, since that is an 
architecture-agnostic term. Option stacks allow us to push a new, high priority option on 
top of the stack, suspending the currently executing option but retaining its internal state. 
When the high priority option completes execution, it will pop itself back off of the stack, 
and the previously executing option will resume as if nothing had ever happened.

There are a myriad of uses for option stacks, and they can often be several levels deep. 
For example, a high-level strategic reasoner might have decided to send a unit to attack 
a distant enemy outpost. Along the way, that unit could be ambushed—in which case, 
it might push a React to Ambush option on top of its option stack. While responding to 
the ambush, one of the characters in the unit might notice that a live grenade has just 
been thrown at its feet. That character might then push an Avoid Grenade option on top of 



66 Part II.  Architecture

React to Ambush. Once the grenade has gone off (assuming the character lives) it can pop 
Avoid Grenade off the stack, and React to Ambush will resume. Once the enemy ambush is 
over, it will be popped as well, and the original Attack option will resume.

One handy trick is to use option stacks to handle your hit reaction. If a character is 
hit by an enemy attack (e.g., a bullet), we typically want them to play a visible reaction. 
We also want the character to stop whatever it was doing while it reacts. For instance, if 
an enemy is firing their weapon when we hit them, they should not fire any shots while the 
hit reaction plays. It just looks wrong if they do. Thus, we push an Is Hit option onto the 
option stack, which suspends all previously running options while the reaction plays, and 
then pop it back off when the reaction is done.

We mentioned this above, but it’s worth reemphasizing that the option stack is not 
meant to prevent the AI from changing what it’s doing, but simply to preserve its previ-
ous state so that can be figured into the decision appropriately. To extend the previous 
example, imagine that the character was hit in the arm and as a result lost the use of 
that arm—and therefore could no longer fire its weapon. In that case, it should certainly 
pick a different option. The option stack simply ensures that the AI has the context of the 
previous actions available to it so that it can make an informed decision.

Option stacks are surprisingly simple to implement for most architectures. In the AI 
configuration, each option can specify whether it should suspend the previous option 
(i.e., push the new option on the stack) or deselect it (i.e., this is a lasting decision). When 
an option that suspended its predecessor finishes execution, it automatically pops the 
stack and resumes the previous option. There are a few edge cases to handle (e.g., What to 
do if another option is selected while there are options on the stack?), but they’re not dif-
ficult to manage. An example of the interfaces to support this can be found in our GAIA 
architecture [Dill 12c].

5.6 � Knowledge Management

Knowledge is the key to good decision making. This is true in the real world, and it is 
doubly true in the realm of game AI, where most decisions boil down to relatively simple 
checks against the current situation. Of course, there are two different kinds of knowledge 
implied in that statement—knowledge of the situation itself, and knowledge of how to 
evaluate the situation in order to make a decision. Looked at that way, there isn’t much to 
an AI beyond knowledge.

Given knowledge’s central role in game AI, it’s worth putting effort into thinking about 
how to best store and access our knowledge.

5.6.1 � Blackboards
In the academic AI community, blackboard architectures typically refer to a specific 
approach in which multiple reasoners propose potential solutions (or partial solutions) to 
a problem, and then share that information on a blackboard [Wikipedia 12, Isla et al. 02]. 
Within the game community, however, the term is often used simply to refer to a shared 
memory space which various AI components can use to store knowledge that may be of 
use to more than one of them, or may be needed multiple times. In our architecture, for 
example, every character has access to two blackboards. The character blackboard stores 



675.  Structural Architecture—Common Tricks of the Trade

information specific to the character, and is only accessible by that character’s AI. The 
global blackboard is accessible by all characters, and is used to store general information.

There are many types of information that can be stored on a blackboard. One com-
mon use is to store expensive checks on the blackboard, so as to avoid the cost of running 
them more than once. Line of sight (LOS) checks are a common example. Quite often, 
more than one component in the AI (or more than one character’s AI) will want to check 
for visibility between the same two objects. These checks can be extremely expensive. 
To lessen the impact of this problem, we can run the check once and then cache it on the 
blackboard. Path-planning checks are similar.

Another common use is to store information used to coordinate AI components. This 
could include partial solutions such as those found in classic blackboard systems, but 
it could also simply be information used to coordinate between multiple characters or 
between different AI components within a character. For example, if you want your char-
acters to focus their attacks on a single enemy or to ensure that every enemy is attacked, 
you can store target assignments on the blackboard. If you want to coordinate spatial 
motion—perhaps flanking, or placing the tanks in front and the DPS and healers in back, 
then you can store movement plans on the blackboard. If you want to ensure that two 
characters don’t try to use the same cover spot, then you can have them reserve it on the 
blackboard. If you have one reasoner whose output is the input for another—for example, 
the emotional reasoner that we discussed earlier in this paper—then that output can be 
placed on the blackboard.

There is an interview with Damián Isla on AIGameDev.com, which gives an excellent 
introduction to blackboard architectures as they are commonly used in games [Isla 10].

5.6.2 � Intelligent Everything
When we think about the AI for a character, it seems intuitive to put all of the knowledge 
needed in the character. This can result in a monolithic, difficult to extend AI, however. 
It can also result in considerable duplication between similar (but not identical) characters.

One trick is to put the intelligence in the world, rather than in the character. This tech-
nique was popularized by The Sims, though earlier examples exist. In The Sims (and its 
sequels), objects in the world not only advertise the benefits that they offer (for example, a 
TV might advertise that it’s entertaining, or a bed might advertise that you can rest there), 
they also contain information about how to go about performing the associated actions 
[Forbus et al. 01].

Another advantage of this approach is that it greatly decreases the cost of expansion 
packs. In the Zoo Tycoon 2 franchise, for example, every other expansion pack was “content 
only.” Because much of the intelligence was built into the objects, we could create new 
objects that would be used by existing animals, and even entirely new animals, without 
having to make any changes to the source code. This greatly reduced the cost of developing 
those expansions, allowing us to focus our efforts on the larger expansions and put out two 
expansions a year instead of just one.

Intelligence can also be placed in the world itself. For example, in Red Dead Redemption 
the people who populate the towns have very little intelligence of their own—but the town 
has hundreds of hotspots. Each hotspot has information about who can use it, what time 
of day the hotspots is valid, and the behavior tree for characters who are on that hotspot. 
Some hotspots can even require multiple characters. So, for example, a chair in a tavern 



68 Part II.  Architecture

might have a hotspot for sitting and drinking and another hotspot for playing poker—but 
the latter is only valid if there are four people at the table (and includes a mechanism for 
coordinating their actions). The piano bench has a hotspot that only the piano player can 
use, and the bar has multiple hotspots for the bartender (some that require other charac-
ters to join him, some not). Even the conversation AI works by creating a dynamic hotspot 
for the two characters that are going to have a conversation.

Of course, intelligence can go anywhere, not just in physical objects or locations. For 
example, games that have a wide range of special abilities can put the intelligence into 
those abilities. Darkspore, a game that had hundreds of abilities—many of them quite 
unique—took this approach [McHugh et al. 11]. Similarly, events can carry information 
about appropriate responses. For example, a fire in a school could carry information about 
how different categories of people (e.g., teachers, children, firemen, parents, etc.) should 
react [Stocker et al. 10].

5.7 � Modularity

Component systems for characters have become commonplace in the games community. 
For example, a character might have a Movement component, an Animation compo-
nent, an AI component, a Weapon component, and so forth. Each component encapsu-
lates one aspect of the character’s functionality behind a shared interface. This sort of 
modularity—breaking a large piece of code into small, reusable pieces with a consistent 
interface—can be tremendously powerful [Dill et al. 12b]. It can allow us to greatly reduce 
code duplication and to reuse more of our code both within a project and across projects. 
In addition, we can more rapidly implement our characters, because we simply have 
to plug in the appropriate module, rather than reimplement the functionality in code. 
It is tremendously liberating to be able to think at the level of broad concepts (i.e., entire 
modules), rather than having to concentrate on individual lines of code.

One extremely powerful use of modules is to create considerations, which are modules 
that can be combined to evaluate the validity of an option [Dill 11b, Dill 12c]. Hearkening 
back to our simple FPS character, the Reload option would have only a single consider-
ation, which checks how much ammo is left in the current weapon. The Flee option, on 
the other hand, might have considerations to evaluate the current health, the number 
of allies left, how much health the enemy has left, what weapons are available, and so 
forth. The AI would combine the output of these considerations into a final evaluation 
of how important it is to flee, given the current situation. The output of these consider-
ations sets might be Boolean (for example, to drive a rule-based reasoner or the transi-
tion in an FSM), or it might be continuous (for example, to drive a utility-based AI). The 
big advantage of considerations is that those exact same considerations can be used for 
other decisions—such as whether to attack aggressively, whether to use a health pack, etc. 
What’s more, the considerations themselves can be reused across projects. Even a very dif-
ferent game (say, a real-time strategy game or a role-playing game) might require health 
checks, counts of surviving allies, distance checks, and so forth. Furthermore, many 
meta-concepts such as option inertia and cooldowns (described in a previous section) can 
be expressed easily as  considerations.



695.  Structural Architecture—Common Tricks of the Trade

Once you embrace modularity, you will find that it can be applied throughout your 
code base. For example, we often have an action that needs a target. The target could be 
a particular character (perhaps the player), or the camera, or a specific (x, y, z) position. 
It could even be the output of another reasoner—perhaps one which evaluates all enemies 
and selects the best one to attack. By having a modular target class, we can decouple 
the logic for specifying and updating the target from the actions that use it [Dill 12c]. 
Furthermore, targets can also be used elsewhere, such as in considerations—for example, 
a distance consideration might measure the distance between two targets without know-
ing or caring what types of targets they are. Targets can even be stored on the blackboard, 
allowing characters to communicate about them (as described in a previous section).

Another example of modularity is a weight function. When we are using consider-
ations to drive utility-based AI, we have found that there are a great many considerations 
that need to map from a floating-point value (such as a distance, the amount of health 
remaining, the amount of ammo remaining, the number of enemies remaining, the time 
since some action was taken, the character’s current hunger, bathroom need, opinion of 
the player, etc.) to a utility value. Although there might be dozens or even hundreds of 
considerations like that, there are actually only a few ways to handle the mapping from 
input value (i.e., the value the consideration computes) to return value (i.e., the consid-
eration’s output). For example, we might simply return the input value directly, apply 
a mathematical function to the input value and return the result, or divide the input 
value into ranges and return a specific output value for each range. Weight functions are 
modular components that use one of those three techniques to do the mapping for us 
[Dill et al. 12b]. They allow us to decouple the mapping from the consideration, ensure 
that we have a consistent data specification for each type of mapping, and enable us to 
move massive amounts of duplicate code, some of it quite complex, into a few relatively 
simple classes. In addition, they allow us to add advanced features, such as hysteresis, 
in a consistent, well-tested way.

These are just a few of the many ways in which AI concepts can be abstracted into 
reusable modules. Other ideas for the widespread use of modularity can be found in 
our previous papers [Dill 11b, Dill et al. 12b, Dill 12c]. Our experience has been that 
finding ways to think about our AI in terms of reusable, pluggable modules (rather than 
in terms of C++ code) provides a tremendous boost in productivity, even on extremely 
fast-paced projects.

5.8 � Conclusion

In this paper we have discussed a number of common techniques that have been used 
across many AI architectures, which can facilitate the creation of your game. Hierarchy 
can be used to divide up the decision making into reasonably-sized pieces, greatly easing 
the process of configuration. Option stacks can enable the AI to respond to a temporary 
situation or opportunity, and then return to what it was previously doing. Knowledge can 
be shared on a blackboard, or placed in an object, in the terrain, in an action, or in an 
event. Finally, modularity can be used when implementing your AI to eliminate massive 
amounts of duplicate code, and to allow you to think in terms of broad concepts, rather 
than individual lines of code, when performing configuration.



70 Part II.  Architecture

References

[Berger et al. 02] L. Berger, F. Poiker, J. Barnes, J. Hutchens, P. Tozour, M. Brockington, and 
M. Darrah. “Section 10: Scripting.” In AI Game Programming Wisdom, edited by Steve 
Rabin. Hingham, MA: Charles River Media, 2002, pp. 503–554.

[Buckland 05] M. Buckland. Programming Game AI by Example. Plano, TX: Wordware 
Publishing 2005, pp. 43–84.

[Cerpa 08] D. H. Cerpa. “A goal stack-based architecture for RTS AI.” In AI Game 
Programming Wisdom 4, edited by Steve Rabin. Boston, MA: Course Technology, 
2008, pp. 457–466.

[Cerpa et al. 08] D. H. Cerpa and J. Obelleiro. “An advanced motivation-driven planning 
architecture.” In AI Game Programming Wisdom 4, edited by Steve Rabin. Boston, 
MA: Course Technology, 2008, pp. 373–382.

[Dill 06] K. Dill. “Prioritizing actions in a goal-based RTS AI.” In AI Game Programming 
Wisdom 3, edited by Steve Rabin. Boston, MA: Charles River Media, 2006, pp. 321–330.

[Dill 11a] K. Dill. “A game AI approach to autonomous control of virtual characters.” In 
Proceedings of the 2011 Intraservice/Industry Training, Simulation, and Education 
Conference. Available online (http://www.iitsec.org/about/PublicationsProceedings/
Documents/11136_Paper.pdf).

[Dill 11b] K. Dill. “A pattern-based approach to modular AI for Games.” In Game 
Programming Gems 8, edited by Adam Lake. Boston, MA: Course Technology, 2011, 
pp. 232–243.

[Dill et al. 12a] K. Dill, E. R. Pursel, P. Garrity, and G. Fragomeni. “Design patterns for 
the configuration of utility-based AI.” In Proceedings of the 2012 Intraservice/Industry 
Training, Simulation, and Education Conference, 2012.

[Dill et al. 12b] K. Dill, E. R. Pursel, P. Garrity, and G. Fragomeni. “Achieving modular 
AI through conceptual abstractions.” In Proceedings of the 2012 Intraservice/Industry 
Training, Simulation, and Education Conference, 2012.

[Dill 12c] K. Dill. “Introducing GAIA: A Reusable, Extensible architecture for AI behavior.” 
In Proceedings of the 2012 Spring Simulation Interoperability Workshop. Available online 
(http://www.sisostds.org/conference/download.cfm?Phase_ID=2&FileName=12S-
SIW-046.docx).

[Dill 13] K. Dill. “What is game AI?” In Game AI Pro, edited by Steve Rabin. Boca Raton, 
FL: CRC Press, 2013.

[Forbus et al. 01] K. Forbus and W. Wright. “Some Notes on Programming Objects in the 
Sims.” Available online (http://www.qrg.northwestern.edu/papers/files/programming_
objects_in_the_sims.pdf).

[Gorniak et al. 07] P. Gorniak and I. Davis. “SquadSmart: Hierarchical planning and coor-
dinated plan execution for squads of characters.” In Proceedings, The Third Artificial 
Intelligence and Interactive Digital Entertainment Conference, pp 14–19. Available 
online (http://petergorniak.org/papers/gorniak_aiide07.pdf).

[Heckel et al. 09] F. W. P. Heckel, G. M. Youngblood, and D. H. Hale. “BehaviorShop: An intui-
tive interface for interactive character design.” In Proceedings, The Fifth AAAI Artificial 
Intelligence and Interactive Digital Entertainment Conference, pp. 46–51. Available online 
(http://www.aaai.org/ocs/index.php/AIIDE/AIIDE09/paper/viewFile/811/1074).



715.  Structural Architecture—Common Tricks of the Trade

[Isla 05] D. Isla. “Handling complexity in the Halo 2 AI.” 2005 Game Developer’s Conference, 
2005. Available online (http://www.gamasutra.com/view/feature/130663/gdc_2005_
proceeding_handling_.php).

[Isla 10] D. Isla. “HALO Inspired Blackboard Architectures and Knowledge Representation.” 
On AIGameDev.com, interview with Alex Champandard, 2002. Available online 
(http://aigamedev.com/premium/masterclass/blackboard-architecture/).

[Isla et al. 02] D. Isla and B. Blumberg. “Blackboard architectures.” In AI Game Programming 
Wisdom, edited by Steve Rabin, pp. 333–342. Hingham, MA: Charles River Media, 2002.

[Mark 09] D. Mark. Behavioral Mathematics for Game AI. Boston, MA: Course Technology, 
2009.

[McHugh et al. 11] L. McHugh, D. Kline, and R. Graham. “AI Development Postmortems: 
Inside Darkspore and The Sims: Medieval.” Lecture, Game Developer’s Conference 
2011 AI Summit, 2011. Available online (http://twvideo01.ubm-us.net/o1/vault/
gdc2011/slides/Lauren_McHugh_AI_Development_Postmortems.ppt).

[Millington et al. 09a] I. Millington and J. Funge. Artificial Intelligence for Games, Second 
Edition. Burlington, MA: Morgan Kaufmann, 2009, pp. 427–457.

[Millington et al. 09b] I. Millington and J. Funge. Artificial Intelligence for Games, Second 
Edition. Burlington, MA: Morgan Kaufmann, 2009, pp. 318–330.

[Nilson 94] N. Nilson. “Teleo-reactive programs for agent control.” In Journal of Artificial 
Intelligence Research 1: 139–158, 1994. Available online (http://www.jair.org/media/30/
live-30-1374-jair.pdf).

[Orkin 04] J. Orkin. “Applying goal oriented action planning to games.” In AI Game 
Programming Wisdom 2, edited by Steve Rabin. Hingham, MA: Charles River Media, 
2004, pp. 217–228.

[Pittman 08] D. Pittman. “Command hierarchies using goal-oriented action planning.” 
In AI Game Programming Wisdom 4, edited by Steve Rabin. Boston, MA: Course 
Technology, 2008, pp. 383–392.

[Rabin 00] S. Rabin. “Designing a general robust AI engine.” In Game Programming Gems 
8, edited by Mark DeLoura. Rockland, MA: Charles River Media, 2000, pp. 221–236.

[Stocker et al. 10] C. Stocker, L. Sun, P. Huang, W. Qin, J. Allbeck, and N. Badler. “Smart 
events and primed agents.” In Proceedings of the 10th International Conference on 
Intelligent Virtual Agents, pp. 15–27, 2010.

[Tozour 04] P. Tozour. “Stack-based finite-state machines.” In AI Game Programming Wisdom 
2, edited by Steve Rabin. Hingham, MA: Charles River Media, 2004, pp. 303–306.

[Wikipedia 12] Wikipedia. “Blackboard System.” http://en.wikipedia.org/wiki/Blackboard_
system, 2012.


