
47

4
Behavior	Selection	Algorithms
An Overview

Michael Dawe, Steve Gargolinski, Luke Dicken,
Troy Humphreys, and Dave Mark

4.1	 	Introduction

Writing artificial intelligence systems for games has become increasingly complicated as
console gamers demand more from their purchases. At the same time, smaller games for
mobile platforms have burst onto the scene, making it important for an AI programmer
to know how to get the best behavior out of a short frame time.

Even on complicated games running on powerful machines, NPCs can range from
simple animals the player might run past or hunt to full-fledged companion characters
that need to stand up to hours of player interaction. While each of these example AIs may
follow the Sense–Think–Act cycle, the “think” part of that cycle is ill-defined. There are
a variety of algorithms to choose from, and each is appropriate for different uses. What
might be the best choice to implement a human character on the latest consoles might not
be suitable for creating an adversarial player for a web-based board game.

This article will present some of the most popular and proven decision-making algo-
rithms in the industry, providing an overview of these choices and showing when each might
be the best selection to use. While it is not a comprehensive resource, hopefully it will prove
a good introduction to the variety of algorithmic choices available to the AI programmer.

4.1	 Introduction
4.2	 Finite-State	Machines
4.3	 Hierarchical	Finite-State	

Machines
4.4	 Behavior	Trees

4.5	 Utility	Systems
4.6	 Goal-Oriented	Action	

Planners
4.7	 Hierarchical	Task	Networks
4.8	 Conclusion

48 Part II. Architecture

4.2	 	Finite-State	Machines

Finite-state machines (FSMs) are the most common behavioral modeling algorithm used
in game AI programming today. FSMs are conceptually simple and quick to code, result-
ing in a powerful and flexible AI structure with little overhead. They are intuitive and easy
to visualize, which facilitates communication with less-technical team members. Every
game AI programmer should be comfortable working with FSMs and be aware of their
strengths and weaknesses.

An FSM breaks down an NPC’s overall AI into smaller, discrete pieces known as states.
Each state represents a specific behavior or internal configuration, and only one state is
considered “active” at a time. States are connected by transitions, directed links respon-
sible for switching to a new active state whenever certain conditions are met.

One compelling feature of FSMs is that they are easy to sketch out and visualize. A
rounded box represents each state, and an arrow connecting two boxes signifies a transi-
tion between states. The labels on the transition arrows are the conditions necessary for
that transition to fire. The solid circle indicates the initial state, the state to be entered
when the FSM is first run. As an example, suppose we are designing an FSM for an NPC
to guard a castle, as in Figure 4.1.

Our guard NPC starts out in the Patrol state, where he follows his route and keeps
an eye on his part of the castle. If he hears a noise, then he leaves Patrol and moves to
Investigate the noise for a bit before returning to Patrol. If at any point he sees an enemy,
he will move into Attack to confront the threat. While attacking, if his health drops too
low, he’ll Flee to hopefully live another day. If he defeats the enemy, he’ll return to Patrol.

While there are many possible FSM implementations, it is helpful to look at an example
implementation of the algorithm. First is the FSMState class, which each of our concrete
states (Attack, Patrol, etc.) will extend:

Flee

InvestigateAttack
See Enemy

Enemy Dead

Patrol

See Enemy

Health Low

Hear Noise

Search Failed

Figure	4.1

This	FSM	diagram	represents	the	behavior	of	a	guard	NPC.

494. Behavior Selection Algorithms

class FSMState
{
 virtual void onEnter();
 virtual void onUpdate();
 virtual void onExit();
 list<FSMTransition> transitions;
};

Each FSMState has the opportunity to execute logic at three different times: when the
state is entered, when it is exited, and on each tick when the state is active and no tran-
sitions are firing. Each state is also responsible for storing a list of FSMTransition
objects, which represent all potential transitions out of that state.

class FSMTransition
{
 virtual bool isValid();
 virtual FSMState* getNextState();
 virtual void onTransition();
}

Each transition in our graph extends from FSMTransition. The isValid() func-
tion evaluates to true when this transition’s conditions are met, and getNextState()
returns which state to transition to when valid. The onTransition() function is an
opportunity to execute any necessary behavioral logic when a transition fires, similar to
onEnter() in FSMState.

Finally, the FiniteStateMachine class:

class FiniteStateMachine
{
 void update();
 list<FSMState> states;
 FSMState* initialState;
 FSMState* activeState;
}

The FiniteStateMachine class contains a list of all states in our FSM, as well as the
initial state and the current active state. It also contains the central update() function,
which is called each tick and is responsible for running our behavioral algorithm as follows:

 • Call isValid() on each transition in activeState.transtitions until
isValid() returns true or there are no more transitions.

 • If a valid transition is found, then:
 • Call activeState.onExit()
 • Set activeState to validTransition.getNextState()
 • Call activeState.onEnter()

 • If a valid transition is not found, then call activeState.onUpdate()

With this structure in place, it’s a matter of setting up transitions and filling out the
onEnter(), onUpdate(), onExit(), and onTransition() functions to produce
the desired AI behavior. These specific implementations are entirely design dependent.
For example, say our Attack state triggers some dialogue, “There he is, get him!” in

50 Part II. Architecture

onEnter() and uses onUpdate() to periodically choose tactical positions, move to
cover, fire on the enemy, and so on. The transition between Attack and Patrol can trigger
some additional dialogue: “Threat eliminated!” in onTransition().

Before starting to code your FSM, it can be helpful to sketch a few diagrams like the
one in Figure 4.1 to help define the logic of the behaviors and how they interconnect. Start
writing the code once the different states and transitions are understood. FSMs are flex-
ible and powerful, but they only work as well as the thought that goes into developing the
underlying logic.

4.3	 	Hierarchical	Finite-State	Machines

FSMs are a useful tool, but they do have weaknesses. Adding the second, third, or
fourth state to an NPC’s FSM is usually structurally trivial, as all that’s needed is to
hook up transitions to the few existing required states. However, if you’re nearing the
end of development and your FSM is already complicated with 10, 20, or 30 existing
states, then fitting your new state into the existing structure can be extremely difficult
and error-prone.

There are also some common patterns that FSMs are not well-equipped to handle, such
as situational behavior reuse. To show an example of this, Figure 4.2 shows a night watch-
man NPC responsible for guarding a safe in a building.

This NPC will simply patrol between the front door and the safe forever. Suppose a new
state called Conversation is to be added that allows our night watchman to respond to a
cell phone call, pause to have a brief conversation, and return to his patrol. If the watch-
man is in Patrol to Door when the call comes in, then we want him to resume patrolling
to the door when the conversation is complete. Likewise, if he is in Patrol to Safe when the
phone rings, he should return to Patrol to Safe when transitioning out of Conversation.

Since we need to know which state to transition back to after the call, we’re forced to
create a new Conversation state each time we want to reuse the behavior, as shown in
Figure 4.3.

In this simple example we require two Conversation behaviors to achieve the desired
result, and in a more complicated FSM we might require many more. Adding additional
states in this manner every time we want to reuse a behavior is not ideal or elegant. It leads
to an explosion of states and graph complexity, making the existing FSM harder to under-
stand and new states ever more difficult and error-prone to add.

Thankfully, there is a technique that will alleviate some of these structural issues: the
Hierarchical Finite-State Machine (HFSM). In an HFSM, each individual state can be
an entire state machine itself. This technique effectively separates one state machine into
multiple state machines arranged in a hierarchy.

Patrol to DoorPatrol to Safe
Reached Door

Reached Safe

Figure	4.2

This	FSM	diagram	represents	the	behavior	of	a	night	watchman	NPC.

514. Behavior Selection Algorithms

Returning to the night watchman example, if we nest our two Patrol states into a state
machine called Watch Building, then we can get by with just one Conversation state, as
shown in Figure 4.4.

The reason this works is that the HFSM structure adds additional hysteresis that isn’t
present in an FSM. With a standard FSM, we can always assume that the state machine
starts off in its initial state, but this is not the case with a nested state machine in an HFSM.
Note the circled “H” in Figure 4.4, which points to the “history state.” The first time we
enter the nested Watch Building state machine, the history state indicates the initial state,
but from then on it indicates the most recent active state of that state machine.

Our example HFSM starts out in Watch Building (indicated by the solid circle and
arrow as before), which chooses Patrol to Safe as the initial state. If our NPC reaches the
safe and transitions into Patrol to Door, then the history state switches to Patrol to Door.
If the NPC’s phone rings at this point, then our HFSM exits Patrol to Door and Watch

Conversation
(from Patrol to Safe)

Conversation
(from Patrol to Door)

GoodbyeGoodbye

Patrol to Safe Patrol to Door

Reached Safe

Reached Door

Phone RingPhone Ring

Figure	4.3

Our	night	watchman	FSM	requires	multiple	instances	of	the	Conversation	state.

Conversation

Reached Door

Reached Safe

Patrol to DoorPatrol to SafeH

Watch Building

GoodbyePhone Ring

Figure	4.4

An	HFSM	solves	the	problem	of	duplicate	Conversation	states.

52 Part II. Architecture

Building, transitioning to the Conversation state. After Conversation ends, the HFSM will
transition back to Watch Building which resumes in Patrol to Door (the history state), not
Patrol to Safe (the initial state).

As you can see, this setup achieves our design goal without requiring duplication of any
states. Generally, HFSMs provide much more structural control over the layout of states,
allowing larger, complex behaviors to be broken down into smaller, simpler pieces.

The algorithm for updating an HFSM is similar to updating an FSM, with added recur-
sive complexity due to the nested state machines. Pseudocode implementation is fairly
complicated, and beyond the scope of this overview article. For a solid detailed imple-
mentation, check out Section 5.3.9 in the book Artificial Intelligence for Games by Ian
Millington and John Funge [Millington and Funge 09].

FSMs and HFSMs are incredibly useful algorithms for solving a wide variety of prob-
lems that game AI programmers typically face. As discussed there are many pros to using
an FSM, but there are also some cons. One of the major potential downsides of FSMs
is that your desired behavior might not fit into the structure elegantly. HFSMs can help
alleviate this pressure in some cases, but not all. For example, if an FSM suffers from
“ transition overload” and hooks up every state to every other state, and if an HFSM isn’t
helping, other algorithms may be a better choice. Review the techniques in this article,
think about your problem, and choose the best tool for the job.

4.4	 	Behavior	Trees

A behavior tree describes a data structure starting from some root node and made up of
behaviors, which are individual actions an NPC can perform. Each behavior can in turn
have child behaviors, which gives the algorithm its tree-like qualities.

Every behavior defines a precondition, which specifies the conditions where the agent will
execute this behavior, and an action, specifying the actual things the agent should do when
performing the behavior. The algorithm starts at the root of the tree and examines the pre-
conditions of the behaviors, deciding on each behavior in turn. At each level of the tree, only
one behavior can be selected, so if a behavior executes, none of its siblings will be checked,
though its children will still be examined. Conversely, if a behavior’s precondition does not
return true, the algorithm skips checking any of that behavior’s children and instead moves
onto the next sibling. Once the end of the tree is reached, the algorithm has decided on the
highest-priority behaviors to run, and the actions of each are executed in turn.

The algorithm to execute a behavior tree is as follows:

 • Make root node the current node
 • While current node exists,

 • Run current node’s precondition
 • If precondition returns true,

 − Add node to execute list
 − Make node’s child current node

 • Else,
 − Make node’s sibling current node

 • Run all behaviors on the execute list

534. Behavior Selection Algorithms

The real strength of a behavior tree comes from its simplicity. The base algorithm can
be implemented quickly due to its straightforward nature. Since trees are stateless, the
algorithm doesn’t need to remember what behaviors were previously running in order
to determine what behaviors should execute on a given frame. Further, behaviors can
(and should) be written to be completely unaware of each other, so adding or removing
behaviors from a character’s behavior tree do not affect the running of the rest of the tree.
This alleviates the problem common with FSMs, where every state must know the transi-
tion criteria for every other state.

Extensibility is also an advantage with behavior trees. It is easy to start from the base
algorithm as described and start adding extra functionality. Common additions are
behavior on_start/on_finish functions that are run the first time a behavior begins
and when it completes. Different behavior selectors can be implemented as well. For exam-
ple, a parent behavior could specify that instead of choosing one of its children to run,
each of its children should be run once in turn, or that one of its children should be chosen
randomly to run. Indeed, a child behavior could be run based on a utility system-type
selector (see below) if desired. Preconditions can be written to fire in response to events as
well, giving the tree flexibility to respond to agent stimuli. Another popular extension is
to specify individual behaviors as nonexclusive, meaning that if their precondition is run,
the behavior tree should keep checking siblings at that level.

A behavior tree, though simple and powerful, is not always the best choice for a selec-
tion algorithm. Since the tree must run from the root every time behaviors are selected,
the running time is generally greater than that of a finite-state machine. Additionally,
the naïve implementation can have a large number of conditional statements, which can
be very slow, depending on your target platform. On the other hand, evaluating every
 possible behavior in the tree may be slow on others where processing power is the limiting
factor. Either approach can be a valid implementation of the algorithm; so the program-
mer would have to decide what is best.

Since behaviors themselves are stateless, care must be taken when creating behav-
iors that appear to apply memory. For example, imagine a citizen running away from a
battle. Once well away from the area, the “run away” behavior may stop executing, and
the highest-priority behavior that takes over could take the citizen back into the com-
bat area, making the citizen continually loop between two behaviors. While steps can
be taken to prevent this sort of problem, traditional planners can tend to deal with the
 situation more easily.

4.5	 	Utility	Systems

Much of AI logic—and, for that matter, computer logic—is based on simple Boolean ques-
tions. For example, an agent may ask “Can I see the enemy?” or “Am I out of ammunition?”
These are purely “yes or no” questions. The decisions that come out of Boolean questions
are often just as polarized. As we saw in the prior architectures, the results of these
 questions are often mapped directly to a single action. For instance,

if (CanSeeEnemy())
{
 AttackEnemy();
}

54 Part II. Architecture

if (OutOfAmmo())
{
 Reload();
}

Even when multiple criteria are combined, Boolean equations tend to lead to a very discrete
result set.

if (OutOfAmmo() && CanSeeEnemy())
{
 Hide();
}

Many aspects of decision making aren’t quite as tidy, however. There are numerous ques-
tions that can be asked where a “yes or no” answer is not appropriate. For example, we
may want to consider how far away the enemy is, how many bullets I have left, how hungry
I am, how wounded I am, or any number of continuous values. Correspondingly, these
continuous values can be mapped over into how much I want to take an action rather than
simply whether to take the action or not. A utility-based system measures, weighs, com-
bines, rates, ranks, and sorts out many considerations in order to decide the preferability
of potential actions. Using the above example as a guide, we could assess how strongly we
want (or need!) to attack, reload, hide, etc.

While utility techniques can be used to supplement the transition logic of other archi-
tectures, it is very possible to build an entire decision engine based on utility. In fact,
there are times when building a utility-based AI is far preferable to other methods. These
might include games where there are many possible actions, and either there isn’t a single
“right” answer or the selection of a preferable action might be based on a large number of
competing inputs. In these cases, we are going beyond simply using utility to measure or
rate something. Instead, we are using it to drive the actual decision mechanism as well.
Another way of stating it is that, rather than saying “This is the one action you will do,” the
utility-based system suggests, “Here are some possible options that you might want to do.”

One well-documented example of this is the use of utility in The Sims. In these games,
the agents (i.e., the actual “Sims”) take information from their environment and combine
it with their own internal state to arrive at a preferability score for each potential action.
For example, the fact that I am “very hungry” combined with the availability of “poor
food” would certainly be more attractive than if I was only “a little hungry.” Additionally,
the proximity of “spectacular” food might still make for a high priority even if I was only
“a little hungry.” Note that the descriptors “spectacular,” “rather,” “poor,” and “a little”
would actually be numbers between some set minimum and a maximum. (A typical
method to use is a floating point number between 0 and 1.)

When it is time to select a new action (either because the current one is finished or
through some sort of interrupt system), some method is used to select from among the
candidates. For example, the scores for the potential actions could be sorted so that we
can simply select the “most appropriate” action—that is, the one with the highest score.
An alternate way is to use the scores to seed a weighted random selection. By casting a
random number against these weighted probabilities, the most preferable actions have a
higher chance of being selected. As an action’s suitability goes up, its score goes up, as does
its chance of being selected.

554. Behavior Selection Algorithms

Another example of where utility-based architectures might be preferable to other
architectures is RPGs. Often in these games, the options that an agent has are varied
and possibly only subtly better or worse, given the situation. For instance, selecting what
weapon, spell, item, or action should be taken given the type of enemy, the agent’s status,
the status of the player, etc., can be a complicated balancing act.

Another wheelhouse of utility architectures is any game system with an economic deci-
sion layer. The question of units or buildings to construct in a real-time strategy game, for
example, is a juggling act of costs, times, and often many axes of priority (e.g., “offense” or
“defense”). An architecture based on utility can often be more adaptable to changing game
situations. As such, it can recover better from being disrupted than can more scripted
models, which can suffer from either being hopelessly confused or can simply trundle
along as if nothing ever happened.

The primary reason for this adaptability is that preferability scores are highly dynamic.
As the game situation changes—either through a change in the environment or a change
in state of the agent—the scores for most (if not all) of the actions will change. As the
action scores change, so does their likelihood of being selected as a “reasonable” action.
The resulting ebb and flow of action scores—especially when combined with a weighted
random selection—often leads to very dynamic emergent behavior.

On the other hand, unlike the architectures that use Boolean-transitioned decision
logic, utility systems are often somewhat unpredictable. Because the selections are based
on how much the actions “make sense” in a given situation and context, however, the
actions should tend to look reasonable. This unpredictability has benefits and drawbacks.
It can improve believability because the variety of actions that could occur in a given situ-
ation can make for far more natural-looking agents rather than the predictably robotic
if/then-based models. While this is desirable in many situations, if your design calls for
specific behaviors at very certain moments, you must make a point to override the utility
calculations with more scripted actions.

Another caveat to using utility-based architecture is that all the subtlety and respon-
siveness that you gain often comes at a price. While the core architecture is often relatively
simple to set up, and new behaviors can be added simply, they can be somewhat challenging
to tune. Rarely does a behavior sit in isolation in a utility-based system. Instead, it is added
to the pile of all the other potential behaviors with the idea that the associated mathemati-
cal models will encourage the appropriate behaviors to “bubble to the top.” The trick is to
juggle all the models to encourage the most reasonable behaviors to shine when it is most
appropriate. This is often more art than science. As with art, however, the results that are
produced are often far more engaging than those generated by using simple science alone.

For more on utility-based systems, see the article in this book, An Introduction to
Utility Theory [Graham 13] and the book Behavioral Mathematics for Game AI [Mark 09].

4.6	 	Goal-Oriented	Action	Planners

Goal-Oriented Action Planning (GOAP) is a technique pioneered by Monolith’s Jeff Orkin
for the game F.E.A.R. in 2005, and has been used in a number of games since, most recently
for titles such as Just Cause 2 and Deus Ex: Human Revolution. GOAP is derived from
the Stanford Research Institute Problem Solver (STRIPS) approach to AI which was first
developed in the early 1970s. In general terms, STRIPS (and GOAP) allows an AI system

56 Part II. Architecture

to create its own approaches to solving problems by being provided with a description of
how the game world works—that is, a list of the actions that are possible, the requirements
before each action can be used (called “preconditions”), and the effects of the action. The
system then takes a symbolic representation of the initial state of the world and some set
of objective facts that need to be achieved. In GOAP these objectives are typically cho-
sen from a predetermined set of goals that an NPC may want to achieve, chosen by some
method such as priority or state transition. The planning system can then determine a
sequence of actions that will allow the agent that it is controlling to change the world from
the original state into a state that contains the facts that need to be true to satisfy its current
goals. In classical planning this would ideally be the critical path to the target state, and
that target would be the most easily reachable state that contained all of the objective facts.

GOAP works by “backwards chaining search,” which is a fancy phrase which means
starting with the goals you want to achieve, working out what actions are required for
those to happen, then working out what needs to happen in order to achieve the precondi-
tions of the actions you just identified and so on. You continue to work backwards in this
fashion until you arrive at the state you started from. It’s a fairly traditional approach,
which has fallen out of favor in the scientific world, replaced by “ forwards chaining search”
which relies on heuristic search, pruning, and other tricks. Backwards search is a solid
workhorse, however, and although it’s less elegant, it’s far easier to understand and imple-
ment than more modern techniques.

Backwards chaining search works in the following manner:

 • Add the goal to the outstanding facts list
 • For each outstanding fact

 • Remove this outstanding fact
 • Find the actions that have the fact as an effect
 • If the precondition of the action is satisfied,

 − Add the action to the plan,
 − Work backwards to add the now-supported action chain to the plan

 • Otherwise,
 − Add the preconditions of the action as outstanding facts

One final interesting aspect of GOAP is that it allows “context preconditions” that are
ignored by the planning system, but must be satisfied at run-time in order for an action to
be executed. This allows for reasoning to bypass certain aspects of the world that cannot be
easily represented symbolically—such as ensuring line of sight to a target before beginning
to fire—while ensuring that by accessing information not made available during planning
(to ensure the search remains tractable), these constraints can be met. This allows the plan
GOAP generates to be somewhat flexible, and the actions it calls for apply more at a tacti-
cal level than at the most basic level of execution. That is, the plan tells you what to do, but
not necessarily how to do it. For example, detailed instructions such as how to establish a
line of sight to begin shooting are omitted and can be handled more reactively.

Let’s suppose we have a typical NPC soldier character, whose goal is to kill another
character. We can represent this goal as Target.Dead. In order for the target to die, the
character needs to shoot him (in a basic system). A precondition of shooting is having a
weapon equipped. Assuming our character doesn’t have one, we now need an action that

574. Behavior Selection Algorithms

can give the character a weapon, perhaps by drawing one from a holster. This, of course,
has its own precondition—that there is a weapon available in the character’s inventory.
If this is the case, we have just created a simple plan of drawing the weapon and then
shooting. What if the character doesn’t have a weapon? Then our search would have to
find a way to get one. If that isn’t possible the search can backtrack and look for alterna-
tives to the shoot action. Perhaps there is a mounted weapon nearby that could be used to
provide the Target.Dead effect, or even a vehicle that we can use for running over the
target. In either case, it’s clear that by providing a comprehensive set of action choices of
what can be done in the world, we can leave it up to the character to decide what should be
done, letting dynamic and interesting behaviors emerge naturally, rather than having to
envisage and create them during development.

Finally, consider a game in which weapons have a maximum range. As a context precon-
dition, we can say that the target must be within that range. The planner won’t spend time
in its search trying to make this true—it can’t, as it would involve reasoning about how the
target might move and so on—but it either won’t fire its weapon until the condition is true,
or it will instead use an alternative tactic such as a different weapon with a longer range.

There’s a lot to like about an approach to NPC control based on automated planning.
It streamlines the development process by allowing designers to focus on creating simple
components that will self-assemble into behaviors, and it also allows for “novel” solutions,
which may never have been anticipated by the team, often making for excellent anecdotes that
players will re-tell. GOAP itself remains the lowest hanging fruit of what automated planning
can provide and, from a purely scientific point of view, the state of the art has progressed
significantly since it was developed. With that said, it can still be a very powerful technique
when used correctly, and provides a good, adaptable starting point for specific customization.

It is worth noting that these kinds of approaches that adopt a character-centric view
of intelligence remove a lot of the authorial and directorial control from the development
team. Characters that can “think” for themselves can become loose cannons within the
game world, creating plans that, while valid for achieving the character’s goals, do not
achieve the broader goals of creating immersive and engaging experiences, and this can
then potentially disrupt cinematic set-pieces if, for example, a soldier’s plan doesn’t take
him past the conveniently placed Big Red Barrel.

While it’s possible to avoid these kinds of issues by using knowledge engineering tech-
niques and representational tricks, it isn’t as straightforward as with architectures such
as behavior trees, which would allow the desired behavior to be injected directly into the
character’s decision logic. At the same time, a GOAP approach is significantly easier to
design than one based around hierarchical task networks, since in GOAP you just need to
describe the mechanics of the objects within a world.

GOAP and similar techniques are not silver bullet solutions, but in the right cir-
cumstances they can prove to be very powerful in creating realistic behaviors and
immersive-feeling characters that players can fully engage with.

4.7	 	Hierarchical	Task	Networks

Though GOAP is perhaps the best-known game planner, other types of planners have
gained popularity as well. One such system, hierarchical task networks (HTN), has been
used in titles such as Guerrilla Games’ KillZone 2 and High Moon Studios’ Transformers:

58 Part II. Architecture

Fall of Cybertron. Like other planners, HTN aims to find a plan for the NPC to execute.
Where it differs is how it goes about finding that plan.

HTN works by starting with the initial world state and a root task representing the
problem we are looking to solve. This high-level task is then decomposed into smaller and
smaller tasks until we end up with a plan of tasks we can execute to solve our problem.
Each high-level task can have multiple ways of being accomplished, so the current world
state will be used to decide which set of smaller tasks the high-level task should be decom-
posed into. This allows for decision making at multiple levels of abstraction.

As opposed to backward planners like GOAP, which start with a desired world state and
move backwards until it reaches the current state world state, HTN is a forward planner,
meaning that it will start with the current world state and work towards a desired solu-
tion. The planner works with several types of primitives, starting with the world state. The
world state represents the state of the problem space. An example in game terms might
be an NPC’s view of the world and him in it. This world state is broken up into multiple
properties such as his health, his stamina, enemy’s health, enemy’s range, and the like. This
knowledge representation would allow the planner to reason about what to do.

Next, we have two different types of tasks: primitive tasks and compound tasks. A prim-
itive task is an actionable thing that can be done to solve a problem. In game terms, this
could be FireWeapon, Reload, and MoveToCover. These tasks are able to affect the world
state, such as how the FireWeapon task would use ammo and the Reload task would refill
the weapon. Compound tasks are higher level tasks that can be accomplished in different
ways, described as methods. A method is a set of tasks that can accomplish the compound
task, along with preconditions determining when a method may be used. Compound
tasks allow HTN to reason about the world and decide which course of action to take.

Using compound tasks, we can now build an HTN domain. The domain is a large
 hierarchy of tasks that represent all the ways of solving our problem, such as how to behave
as an NPC of some type. The following pseudocode shows how a plan is built.

 • Add the root compound task to our decomposing list
 • For each task in our decomposing list

 • Remove task
 • If task is compound

 − Find method in compound task that is satisfied by the current world state
 − If a method is found, add method’s tasks to the decomposing list
 − If not, restore planner to the state before the last decomposed task

 • If task is primitive
 − Apply task’s effects to the current world state
 − Add task to the final plan list

As mentioned, HTN planners start with a very high-level root task and continuously
decompose it into smaller and smaller tasks. This decomposition is steered with each
compound task’s set of methods by comparing each method’s conditions with the current
world state. When we finally come across a primitive task, we add it to our final plan. Since
each primitive task is an actionable step, we can apply its effects to the world state, essen-
tially moving forward in time. Once the decomposing list is empty we will either have a
valid plan or have backed out entirely leaving us with no plan.

594. Behavior Selection Algorithms

To demonstrate how an HTN works, suppose a game has a Soldier NPC that needs
its AI written. The root compound task might be named BeSoldierTask. Next, the soldier
should behave differently if he had an enemy to attack or not. Therefore, two methods
are needed to describe what to do in these cases. In the case where an enemy is pres-
ent, the BeSoldierTask would decompose using the method that required that condition.
The method’s task in this case would be AttackEnemyTask. This task’s methods define the
different ways that the soldier could attack. For example, the soldier could shoot from a
cover position if he has ammunition for his rifle. If he didn’t have ammo for his firearm,
he could charge the enemy and attack him with his combat knife. Writing these give
AttackEnemyTask two methods to complete the task.

The more we drill down on a soldier’s behavior, the more the hierarchy forms and
refines. The structure of the domain fits naturally in how one might describe the behavior
to another person.

Since HTNs describe behavior using a hierarchical structure, building and reasoning
about characters is done in a natural way, allowing designers to more easily read through
HTN domains, assisting with collaboration between programming and design. Like other
planners, the work that is actually done by the AI is kept in nice modular primitive tasks,
allowing a lot of reuse across different AI characters.

Since HTN is a search through a graph, the size of your graph will affect search times,
but there are two ways to control search size. First, the method’s conditions can be used
to cull entire branches of the hierarchy. This happens naturally as behaviors are built.
Second, having partial plans can defer complex calculations until plan execution. For
example, consider the compound task AttackEnemy. One method might have the subtasks
NavigateToEnemy followed by MeleeEnemy. NavigateToEnemy requires pathing calcula-
tions, which can not only be costly, but could be affected by the state of the world, which
might change between planning and execution. To utilize partial plans, split these two
tasks into two methods, rather than one method with subtasks: NavigateToEnemy, if the
enemy is out of range, and MeleeEnemy when in range. This allows us to only form a par-
tial plan of NavigateToEnemy when the enemy is out of range, shortening our search time.

One other note is that the user needs to build the network for HTN to work. This
is a double-edged sword when comparing it to GOAP-style planners. While this allows
the designer to be very expressive in the behavior they are trying to achieve, it removes
the NPC’s ability to build plans that the designer might not have thought of. Depending
on the game you are building, this can be considered either a strength or a weakness.

4.8	 	Conclusion

With such a wide variety of behavior selection algorithms available, it is imperative that
the AI programmer have knowledge of each tool in the toolbox in order to best apply each
to a given situation. Which algorithm is best for a given NPC can depend on the game,
the knowledge state of the NPC, the target platform, or more. While this is not a com-
prehensive treatment on every available option, knowing a bit about where to start with
the options can be invaluable. By taking time to think carefully about the needs of the
game, an AI system can be crafted to give the best player experience while maintaining the
 balance between development time and ease of creation.

60 Part II. Architecture

References

[Graham 13] R. Graham. “An Introduction to Utility Systems.” In Game AI Pro, edited by
Steve Rabin. Boca Raton, FL: CRC Press, 2013.

[Mark 09] D. Mark. Behavioral Mathematics for Game AI. Boston, MA: Cengage Learning,
2009.

[Millington and Funge 09] I. Millington and J. Funge. Artificial Intelligence for Games.
Burlington, MA: Morgan Kaufmann, 2009, pp. 318–331.

