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Informing Game AI through 
the Study of Neurology
Brett Laming

2.1 � Introduction

Human beings are fascinating machines, and the world of science is an amazing place. 
But as AI programmers we usually end up closeted in computer science and conditionals, 
rather than taking inspiration from the worlds we are trying to emulate. Math, psychol-
ogy, biology, engineering, and the physical sciences all have a part to play in the inspira-
tion and mechanisms we use in our daily jobs.

Focusing on neurology, this article aims to inspire you to think further afield, giving you 
a detailed understanding of the neuron while illustrating aspects that have contributed to 
the author’s programming tool kit and critical thinking. It is not intended as a full course 
in the field but aims to inspire further reading. With that and brevity in mind, much will be 
simple illustration at the potential cost of over-simplification.

2.2 � Critical Thinking

AI often involves mimicking higher cognizant behavior. Faced with hypothetical situa-
tions most people correctly start with introspection, answering the question, “What would 
I do?”

As a programmer, this then becomes, “How do I code that?” followed by, “How do I 
code that efficiently?” But if we remove deadlines and programming from the equation for 
a minute and take some time to reflect on our thoughts, then maybe better questions are, 
“How would I do that?” and “Why?” Think a bit more and you realize that these questions 
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are the primary drive of the psychological and biological sciences, a point that has not 
gone unnoticed before [Kirby 02].

If we invest the time to answer those questions we might be more likely to arrive at 
physically grounded behavior. But in this high pressure world, is it really that necessary? 
After all, we as AI programmers have survived quite well already.

And herein lies the most dangerous assumption of all, because with advances in loco-
motion fidelity, emotional content, and facial expressiveness, even the slightest nuance 
may immeasurably affect immersion. Without trying, we will never know, and with the 
Internet at our ready disposal, is there really an excuse for not doing some research, even 
if we just take the low hanging fruit?

2.3 � Neurology

We are in the business of writing AI, the predominant output of which is behavior. 
Whether this output is represented as animation, speech, or thought, it is none the less 
analogous to the role of the brain and wider nervous system. From robotics to cognitive 
science, disciplines have taken their cues from their biological counterparts.

As such, considering its involvement in everything from the senses, through higher 
thought, to motor output, the study of neurology is one of our best foundations in the 
AI world. While our understanding of this huge and complex subject is very incomplete, 
it has one key redeeming feature. Almost the entire nervous system, brain, or nerves, 
is  made out of one very fundamental cell—the neuron—and this single building block 
arms us with more information than you would at first expect. As AI programmers, it is 
wise at first to understand as much as possible about the cognitive mechanisms and build-
ing blocks of the creatures we are trying to represent. Hopefully, this section will serve 
as both a primer and provide keyword hooks to help further understanding. Commonly 
misrepresented as a purely electrical process, this section will introduce the biophysical 
side that has been gaining popularity in the field of computational neuroscience. It will 
take you through the full signaling properties and mechanisms of the neuron in sections, 
interspersed with the inspiration and history of some useful AI techniques before culmi-
nating in derivation of the perceptron as the basic building block of the neural network 
and why it is still useful by itself. Should you wish to delve into a little more detail on the 
neuroscience side, The Computational Brain [Churchland 99] and From Neuron to Brain 
[Nicholls 92] are both excellent resources.

2.3.1 � Primer: The Electrical Processing Myth
Before we begin, it is important to clarify a dangerous preconception. We often assume 
the nervous system communicates by electrical signals. It unfortunately does not; we have 
merely adopted this metaphor as a handy way of generalizing the actual process. For now, 
we need to temporarily forget the visualization of electrical signals running down wires 
from the brain because it comes with preconceptions.

In fact, our notion of this electrical signal is really just a view of the voltage (membrane 
potential) at a single point on the neuron’s cell membrane. Obtained by a pair of electrodes 
seated on either side of the membrane, it can give the impression of a spatial nature when 
really it is just a point voltage changing over time. The notion of voltage arises because the 
semipermeable cell membrane separates different concentrations of ions, and being thin, 
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exhibits capacitance that eventually gives rise to membrane potential. Drawn in graph form 
then, over time, it would appear as a flat line situated around –70 mV or the resting potential.

2.3.2 � Takeaway: Don’t Neglect the Temporal Aspects
A different view of the same data immediately transforms our perception. What is tradi-
tionally considered an electric signal racing around the body, when clamped to one loca-
tion, merely becomes a meter registering activity. But as we shall shortly see, drawn over 
time this once again provides the signal with a shape. Being reminded to think about 
problems in both time, as well as the current state, definitely has its merits, especially in 
utility theory [Mark et al. 10], and if you are ever overwhelmed by AI state—for example, 
AI steering signals given to vehicles—try graphing sections of it over time; the patterns 
and problems often become very much more obvious in the time domain.

2.3.3 � Primer: The Neuron at Rest
For the neuron to remain balanced at rest, a number of conditions need to be met. Two 
of the most important are, first, that the net charge on either side of the cell membrane 
must be zero and, second, the concentrations of solute particles inside (intracellular) and 
outside (extracellular) must balance. A common misconception then is that if this were 
so, there would be no difference in charge (both sides zero) and the membrane potential 
would be 0 mV also. So where did that –70 mV come from? The key here is the difference in 
individual ion concentrations and the clue that the membrane is semipermeable.

Two primary forces act on charged ions. Diffusion seeks to push ions towards areas of 
lower concentration, and electrical attraction seeks to pull them towards areas of opposite 
charge. So looking at Figure 2.1, we can see that overall concentrations on either side are 
indeed balanced, and the overall charge on either side is zero. However, there are still 
vastly different concentrations of all relevant ions. At rest, the cell membrane is essentially 
closed to sodium ions (Na+), and proteins are too big to go through. So while diffusion 
might want to alter the balance, proteins and Na+ have nowhere to go. However, the cell 
membrane is permeable to chlorine ions (Cl–) and very permeable to potassium ions (K+). 
As such K+ tries to flow out of the cell by diffusion. In doing so, its exit causes a charge 
imbalance that sees the now more negative inside attracting the positive ions. Cl– similarly 
gets pulled back to the outside because traveling inside would make the outside even more 
positive. When the system eventually settles and overall ions are at rest, this more negative 
inside, with respect to the outside, gives us our resting potential.

Before we move on you might be wondering, what if K+ and Cl– were left long enough 
that ions on either side normalized, and concentrations became neutral across the 
membrane? Two things spoil the plan. First, the permeability to K+ is very much higher 
than to Cl–, so K+ is far more effective in creating an electrical pull that affects both types 
of ions. As such K+ is the dominant partner, and Cl– can be thought as just reshuffling to 
match. Second, a number of active transport mechanisms, including membrane pumps, 
work as necessary to return ions to their relevant sides.

2.3.4 � Takeaway: Diffusion
Diffusion is a nice technique, and if you have used influence maps you will no doubt work 
out why. Most of the general tweaks for making influence maps work [Champandard 11] 
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can be, in actual fact, worked into the diffusion equation. In textbooks, the equation has a 
tendency to look formidable:
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the heat equation:
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∇2 is known as the Laplacian operator, and it turns out that it can be computed by finite 
methods. If we create a grid of a variable α, for example ion concentration or influence, 
with constant grid cell width r, then the change in α after a time dt by diffusion is simply 
the sum of α for any connected neighbors minus any relatively scaled contribution before 
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Figure 2.1

Diagrammatic representation of a neuron at rest. Four ions are represented, potassium 
(K+), sodium (Na+), chlorine (Cl–), and an electrically charged anion (A–) representing intra
cellular proteins. Notice here that total charge on either side of the cell is net zero and that 
the number of counted ions is balanced at 16 on each side.
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being averaged by grid cell area. If over time we then add on anything that might change 
this value of α, like a drip feed of ions or an increase of influence k, we obtain the following 
for a 2D grid of cell location i,j at time t:
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Here, k could model anything from a decay rate to suppression by a different influence 
map. The beauty of this system is that it is both compensated for in time and space, which 
means it allows us to work with rate of change. Imagine its use in a real-time strategy 
domain, where production rates could be factored in, in place of production spikes!

But the best news is that this technique has already been adopted by the graphics com-
munity for many similar things due to its easy visualization in texture space. This also 
means it would be quite possible to get AI based simulations to work by just following 
similar GPU diffusion or gas examples—where the code is significantly easier to visualize 
than the math [Pharr 05].

2.3.5 � Primer: Perturbation from Equilibrium
We have stated that the cell must always remain in equilibrium. But if it did so then 
the resting membrane potential would stay at ~–70 mV, and nothing would happen. As 
such, much processing of the neuron comes about by either electrical charge or concen-
tration changes. Consider what happens if we increase the concentration of K+ outside 
the cell. A decrease in K+ concentration gradient now means K+ has less inclination to 
leave the cell, and so less charge is required to pull it back. The relative membrane poten-
tial therefore becomes more positive, which also means less resistance to Cl– moving in. 
Postperturbation, extracellular diffusion, and an increase in active transport work hard 
to return the neuron to equilibrium and standard resting concentrations. This results in 
a decay of membrane potential to resting values as illustrated in Figure 2.2. This common 
response-decay curve is a characteristic of most changes in local concentration.

2.3.6 � Primer: The Spike or Action Potential
While a small change in membrane potential like the above is at least a signal, its effects 
are local and will dissipate quickly. To facilitate neuronal transmission we are going to 
need something of a very different magnitude.

Recall that we said that K+ was permeable at rest and Na+ was not. This is made possible 
because a number of K+ specific membrane channels situated in the cell wall are in the open 
state allowing K+ ions to be free to move if they want to. Similar Na+ specific membrane 
channels in the cell membrane remain closed at the specified membrane potential. It turns 
out that there are many different ion channels found in neurons, sensitive to a wide range 
of factors, including membrane potential range.

Now consider the case where we temporarily push the membrane potential above the 
opening point of the Na+ channels as seen in Figure 2.3. This opens Na+ channels which, 
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combined with a massive concentration gradient into the cell and the accelerant of nega-
tive charge inside as shown in Figure 2.1, cause a massive influx of Na+ ions. This pushes a 
huge swing in membrane potential towards the positive (depolarization). All things being 
equal, we might then expect the top response of Figure 2.2 albeit with much greater mag-
nitude and duration. But as the voltage swings positive, high voltage potassium channels 
open and K+ flows out of the cell also at great speed, driven by both a concentration gradi-
ent and repulsion from a more positive inside. This causes a rapid swing back the other 
way (repolarization). Because channels represent a rearrangement of lipids in the cell 
membrane, there is both a delay in closing and a period before which they will reopen 
again. In the case of the rapid efflux of K+, this delay means the membrane potential dips 
below rest (hyperpolarization) before active processes, now working very hard in the form 
of a combined K+/Na+ pump, attempt to return the concentrations to rest. The resulting 
climb is called the refractory period, and at this stage it is performing as in the bottom 
case of Figure 2.2. Once channels are ready to reopen again, it will be possible for a second 
action potential to be generated. If the concentrations get the chance to return to rest, 
then this process is lossless and will result in a similar action potential if activated again. 
If ion concentrations haven’t returned to rest, it is still possible to activate further action 
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Figure 2.2

An illustrative representation of the membrane potential response curve due to a localized 
change in extracellular K+ concentration (top). Notice that after an initial sharp change 
from the delivery, a slow decay to rest represents active processes returning concentrations 
to normal resting levels. (bottom) Increasing intracellular K+ leads to a reverse effect.
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potentials. However, the ion concentrations will become more and more imbalanced, with 
each action potential starting at a higher membrane potential, until the system will fail 
to respond, at which point it will have to decay to operating conditions again. This over
excitation results in a burst of spike activity, followed by periods where the neuron simply 
cannot fire.

2.3.7 � Primer: Signal Transmission
So if the change in membrane potential is local to a specific location, how do signals travel? 
Recall that we said that the imbalance of ions causes a charge on the membrane, the same 
charge that gives us the membrane potential. Just like lightning, if an area of higher charge 
is different from its surroundings, it spreads outwards. Likewise if a change in ion con-
centration occurs at a particular site, then inside or outside the cell, diffusion will try to 
normalize the overall concentration on either side of the membrane.

If these changes are enough to push the neighboring membrane potential above the 
threshold for Na+ channels to open, a similar action potential will be generated on a neigh-
boring site on the cell membrane, causing a ripple effect as action potential generation 
spreads outwards. It is this “The Wave” style of propagation that gives us our notion of 
the electrical signals traveling around the nervous system. Because activated channels 
need time to recover and the refractory period helps keep the local membrane potential 
negative, neighboring sites cannot retrigger an action potential again in the same region 

Action
potential

Vo
lta

ge
 (m

V
)

D
ep

ol
ar

iz
at

io
n

Re
po

la
riz

at
io

n

�reshold

Stimulus

Resting state

Refractory
period

+30

0

–55

–70

4210 3 5
Time (ms)

Na

KNa

K

Figure 2.3

The action potential profile. Phases are marked alongside key ion changes that help 
produce the characteristic shape. Notice that failure to produce an action potential elicits 
a similar response to Figure 2.2.
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so signal transmission carries lossless in an outwards direction as illustrated in Figure 2.4. 
This is true of both single signal and bursting neurons.

2.3.8 � Takeaway: The Schmitt Trigger and Hysteresis
At a similar time that action potential and nerve fiber transmission was being discovered, 
Otto Schmitt was taking inspiration from its workings. In his 1937 dissertation he intro-
duced the thermionic trigger later to be known as the Schmitt trigger [Schmitt 38].

While it has many other uses in electronics, the Schmitt trigger has the interesting 
property that the switch between two states, say on or off, is based on an overlap of differ-
ent activation conditions between them, in essence covering the dead zone from one to the 
other. Hence, in systems that might vary around a key trigger value, this system ensures 
that a period of change must occur before the state will switch. We call this dual threshold 
approach hysteresis. It is often a key to keeping clean control in AI systems, especially 
where switches in animations are concerned as best illustrated by Listing 2.1.

A key point to remember about Schmitt triggers is that they rely on a physically chang-
ing property, such as voltage or concentration, incorporated in the system. The most com-
mon mistake is to believe you can add hysteresis with a timer. It is not hysteresis and it is not 
protecting you; it is just changing the frequency of oscillation. Proper hysteresis might not 
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An illustration of action potential propagation through nerve fibers over time. The resulting 
swing in repolarization and the delay in membrane channels reopening prevent previously 
excited sites from firing again.
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be as clean as a single variable either; it might be a complicated series of conditionals that 
separate logic space. Yet the principle will still hold, provided there is the relevant overlap.

2.3.9 � Takeaway: Compartmentalize to Solve Hard Spatial Problems

Notice how a potentially hard problem, the transmission of action potentials, can be better 
conceptualized by compartmentalizing the space (Figure 2.4). At this stage, each com-
partment represents just a local area, and the comprehension is immediately simplified. 
Now consider a tactical warfare simulation with a realistic AI communication system. 
Rather than working out a route for each agent “A” to get a message to another agent “B,” 
it is easier to imagine all such agents on a compartmentalized grid, posting messages to 
neighboring agents who then carry the transmission that way. In doing so, we get some 
nice extras for free: the potential for spies, utterance signaling, realistic transmission 
delays, and bigger signaling distances covered by nonverbal gestures or field phones. In 
either case, by thinking about the problem as a different representation, we have instantly 
simplified the procedure and got some realistic wins as well!

2.3.10 � Primer: Morphology

If neurons were just a wire, comprising the same action potential generating membrane 
channels, then life would be a lot easier. Unfortunately, most neurons have a complex 
shape or morphology, and very different ion channels along the membrane. This means 
that the neuron itself is responsible for a lot of implicit processing.

The morphology of a typical neuron consists of four parts: the dendrites, the soma, the 
axon, and the axon terminals (as illustrated in Figure 2.5).

Listing 2.1.  An example of hysteresis. If we were just to base our approach distance 
around a single value (5m), then every slight move outside that radius would cause 
us to follow. With hysteresis, once we start to follow we will continue until we are 
inside 2.5 m, and won’t start again until we are further away than 5 m. This noise 
reduction means the player has some maneuvering room before we decide we 
need to be closer.

const float SEPARATION_DISTANCE = 2.5f;
const float APPROACH_DISTANCE = 5.0f;
if (approach_player = = false)
{
	 if (distance > APPROACH_DISTANCE)
	 {
		  approach_player = true;
	 }
}
else
{
	 if (distance < SEPARATION_DISTANCE)
	 {
		  approach_player = false;
	 }
}
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For the time being we can think of signals in the neuron starting as a change in mem-
brane potential at dendritic sites that generates one of two different types of responses 
similar in nature to Figure 2.2. With a distinct absence of Na+ gated channels, the voltage 
profile of the first response is very similar, albeit reaching higher magnitudes and therefore 
a longer decay. The second response is inhibitory and inverted, with its changes actively 
making the membrane potential more negative, but otherwise following a similar path. 
The near lack of action potential generation in the dendrites means transmission is gener-
ally passive, spreading merely by change of charge in neighboring regions. While a single 
signal might die out, the frequency at which dendrites are activated means that there is 
generally constant stimulation, be that excitation or inhibition that sums in both distance 
and time. If this summation of charge reaches the soma and creates a high enough poten-
tial difference, then traditional spike generation channels at the axon head carry a new 
signal down the axon to the axon terminals. While the distance between dendrites and 
soma is usually small, axons are generally much longer. To facilitate quicker conduction 
velocity, the axon is usually insulated by a myelin sheath that focus charge build-up from 
strong action potentials at the nodes of Ranvier. This charge is strong enough to cause 
excitation in a neighboring node faster than it could be carried there normally.

2.3.11 � Primer: Synaptic Transmission and Plasticity

The last section mentioned that when dendrites are excited or inhibited there is a strong 
change in membrane potential, the general cause of which is attributed to synaptic 
transmission. As illustrated in Figure  2.6, when a conducted signal reaches the axon 
terminals, a change in membrane potential triggers vesicles (think seed pods) in the 
presynaptic cell membrane that shoot a packet of complex chemicals (neurotransmitters) 
into the medium between cells. Pointedly projected at other neurons, neurotransmitters 
travel a short distance through this medium to be picked up by receptors on the dendrites 
of neighboring postsynaptic neurons. This in turn triggers the opening of a number of ion 
channels, resulting in either an excitatory (positive) or inhibitory (negative) change in 
membrane potential. These changes are called EPSP (excitatory postsynaptic membrane 
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Figure 2.5

A diagrammatic representation of the key components forming the morphology of the 
neuron.
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potential) and IPSP (inhibitory postsynaptic membrane potential), respectively, and can 
be thought of as high magnitude variants of Figure 2.2.

2.3.12 � Primer: Plasticity and Learning
We know that the brain can learn and adapt. Dendritic excitation is generally a short 
term byproduct of postsynaptic potentials and action potential generation is for the most 
part fire-and-forget; so where is the mechanism for learning? Again the purely electrical 
viewpoint doesn’t suffice. Only by understanding the chemical processes are we able to 
hypothesize on the mechanisms that might do so.

Recall that in synaptic transmission, synapses expel neurotransmitters across to other 
neurons. If we were to change the sensitivity of these postsynaptic neurons or the amount 
of neurotransmitters expelled, then obviously the resulting effect will be an increase 
or reduction in the postsynaptic potential. Both mechanisms could therefore be used 
by pre-  and postsynaptic neurons to control the strength of that connection. We call 
this synaptic plasticity, and it is here that the principles of learning and adaptation are 
believed to lie.

Vesicles

Synaptic Cleft

Postsynaptic receptors

Figure 2.6

A diagrammatic representation of the synapse. In response to stimuli, vesicles in the pre
synaptic neuron expel their contents into the synaptic cleft. These cross the cleft to the post-
synaptic neuron where receptors trigger changes in postsynaptic potential.
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2.3.13 � Primer: The Hebb Rule and Rosenblatt’s Perceptron
In 1949, Donald Hebb, in an effort to understand learning, made the assumption that if 
the axon terminals of one neuron regularly excited the dendrites of another, such that they 
regularly took part in firing it, then some growth or metabolic process would increase 
both their efficiencies in doing so [Hebb 49]. In other words, for each synapse i of a total 
number j contacting the neuron, the change in their strength wi  would be a proportion of 
how much their contributory input x correlated with the output y. Here Hebb defined out-
put as the summation of all the input to synapses xi  times their individual strength  wi . 
In other words, he attempted to mimic primitive synaptic sensitivity and interaction in the 
dendritic tree. In line with real neurons, he hypothesized that this change would happen 
slowly over time (using a learning rate μ). Put into mathematics we say:

	 ω µi ix y=

where

	 y x
i

j

i i=
=
∑

0

ω

In 1957, Frank Rosenblatt took Hebb’s rule of learning and applied it in algorithmic 
form as the perceptron algorithm, making a number of improvements at the same time 
[Rosenblatt 57]. First, the synaptic strength in Hebb’s rule can quickly grow unstable if 
all inputs continue to contribute. So Rosenblatt favored learning only if the result was 
unexpected. He also constrained output, mimicking the firing of the axon only if a sum-
mation threshold is reached and applied a bias term to keep things moving if all other 
inputs were 0.

Hence the Rosenblatt perceptron can be specified as follows:
For a vector of potential inputs v i ii j= − … 1 1, , ,  and a vector of weights vw j=  …ω ω ω0 1, , ,  

where ω0  represents the bias weight, but always for a constant input ( i0 1= − ):

	 y v v then elsei w= >  .        0 1 0

Rosenblatt’s perceptron has two phases, a learning pass and a prediction pass. In the 
learning pass, a definition of vi  is passed in as well as a desired output, yideal , normalized 
to a range of 0 … 1. On each presentation of vi  and yideal  a learning rule is applied in a 
similar form to Hebb’s.

Here, each weight is affected by the difference in overall output and expected output 
yideal  multiplied up by contributory input and learning rate.

	 ω ω µi t i ideal iy y i, + = + −( )1

So by presenting a series of these vectors and desired output, it is possible to train this 
artificial neuron to start trying to give new output in the absence of untrained conditions 
by just applying the output calculation without training.
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2.3.14	 Takeaway: The Hebb Rule and Rosenblatt’s Perceptron

There are a number of key points here. First, unlike neural networks that commonly con-
sist of many of these units, at this simple level the meaning of the parameters is under-
standable. In AI terms, this gives us both the glamorous, a potential prediction of player 
behavior, and the less so, in the tuning of parameter unknowns.

The perceptron is essentially a Boolean classifier. For n changeable variables in an input 
vector, it tries to train the weights to correctly classify an nD point as being on one side (1) 
or another (0) of an imaginary separator through that space. Hence, if n = 1, the separator 
is a value that splits i1 . At n = 2, it represents a line that divides i i1 2,[ ] . At n = 3, it is a plane 
dividing i i i1 2 3, ,[ ]  and so on.

Provided the inputs can be logically separated—the XOR function is an example that 
can’t be linearly (n = 2) separated—then with enough training, weights should settle and 
y yideal −( )→ 0 . If this does not eventually happen, then this tells us that either the prob-

lem is not Boolean classifiable, or we have not used the correct input. However, with some 
common-sense guesses on dependent variables, results are generally obtainable.

Moreover, its synaptic strength wi  is potentially understandable. Removing bias, 
which just seeks to modify the threshold as wi → 0 , then we know that particular input 
we are passing in doesn’t factor much on our decision. Just like at synapses, if it is less than 
0 it inhibits the 1 result, and if greater than 0, it adds towards it. Now combine this with a 
notion of utility [Mark 09] essentially heuristic in form, and you can test what factors are 
critical in influencing a decision and whether you have got them right.

The key here is the training on input. For example, here is a utility equation from a 
recent talk [Mark 10]:

	 cover chance = 0.2+reload need×1.0+heal need ×1.5+threat rating ×1.3

Now, these values probably took some degree of trial and error to arrive at and probably 
had to be normalized into sensible ranges. But consider this:

	 cover chance w reload need w heal need w       = − × + × + ×1 0 1 2 ++ ×threat rating w    3

If we present the player with a number of scenarios and ask them whether they would 
take cover, we can easily get values that, after enough questions, are still easily accessible 
in meaning and therefore can make better initial guesses at the equation that might want 
to drive our AI.

A final nice property is that we don’t necessarily need to answer the false side of the 
equation if we don’t want to; we could just supply random values to represent false. 
Imagine each time the player goes into cover we measure these values and return true, 
following it by random values that return false. Even if we happen to get a lucky random 
true cover condition, over time it will just represent noise. If we then clamp all weights to 
sensible ranges, potentially found by training in test circumstances, we now have a quick 
to compute run-time predictor of what determines when the player may think of going 
into cover!
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2.3.15 � Primer: Pathways
Our final foray into the world of the nervous system involves what happens when neurons 
combine at synapses and networks are formed. When we talk about these series of identifi-
able connections we talk about pathways.

The shortest and least complicated pathway, the reflex arc in Figure  2.7, connects a 
sensory neuron through a synapse to an intermediate neuron, through another synapse 
to a motor neuron. Other pathways, on the other hand, pass through many more neurons. 
Considering what we know about the signal transmission process, it seems reasonable, 
then, that transmission times should scale based on neuron count and travel distance.

Recall that we said one of the key dangers with neurology was thinking of signaling 
as electrical impulses traveling through wires. Electrical current approaches the speed 
of light at 3 × 108 m/s. The fastest myelinated axons can only achieve speeds of 120 m/s. 
To put this in perspective, Table 2.1 shows the time taken for different sensory signals to 
reach the brain. This is before considering any further processing or motor output. It is 
hardly surprising then that the senses we rely on the most are the ones located closest to 
our brains.

Once you start bringing in motor control, however, even for simple tasks, the times just 
continue to rise. Ask a friend to hold a ruler, with your thumb and finger ready to grasp it 
at the bottom. Let them drop the ruler unannounced and as soon as you see it move, close 
your fingers to grasp the ruler.

Now because s ut at= + 1
2

2, where a is gravity and u is 0, reaction time can be worked 
out from the equation

	 t s= 2
9 8
*
.

where s is the distance traveled on the ruler where you grasped it (in meters). Do the math 
and the value should come out around 0.2 seconds.

The point here is, even at 30 frames per second, your reaction time to a reasonably simple 
coordination task is actually already 6 frames.

1
A 2B C

Figure 2.7

Diagrammatic view of the reflex arc. Sensory input (1) gets carried by neuron (A) to an inter-
mediate neuron (B) and onto the muscle (2) through neuron (C).

Table 2.1  The time for various 
stimuli to reach the brain

Stimulus Time to brain (ms)

Auditory 8–20 ms
Visual 20–40 ms
Touch 155 ms
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Compare this with receiving a burn. Your natural reaction is to pretty instantaneously 
pull away. Yet by our calculations, assuming touch speed, if the signal was traveling from 
hand to brain to hand again, this travel time would be in the range of 300 ms. So here, the 
answer almost certainly lies in a reflex arc transferring pain signals, through a really small 
pathway, to a motor neuron and therefore producing an uncontrolled involuntary reflex.

In a lot of precise or fast-acting systems, any uncompensated latency is going to have a 
serious detrimental effect on accuracy. Imagine the hard task of trying to grasp a moving 
feather in a drafty room. Here, our visual cues need to be processed into some spatial 
representation and transformed into motor commands to coordinate a large number of 
muscles that allow us to finally grasp it. Yet, remarkably, we can do this with some ease.

Trying to reduce this error in a traditional closed loop way, with the latency we have 
discussed, would mean we would consistently fail to react to the near-random changes 
in direction. Instead, the nervous system uses a different technique to cope. We call this 
open-loop ballistics.

As a simple example, saccades are the fast movement of the eyes that swing focus to 
different points in the visual field. Given that visual feedback to the brain takes between 
20–40 ms to return and measured eye travel velocities can reach 900 deg/sec, any attempt 
at error correction by a closed loop is going to lead to overshoots of ~3 degrees and there-
fore be untenable. It turns out that in order to cope, saccades make use of a ballistic open 
loop. Put simply, the journey is preplanned prior to onset. Experiments show that eye 
muscles respond to bursts of spikes, the frequency of which roughly maps linearly to eye 
velocity. We also know that to move the eye, a series of spikes come in that force the eye to 
travel very fast to a new position, before the frequency scales down, so that it applies only 
enough velocity to counteract the elasticity of the muscles wanting to return.

Something then is controlling the output of these spikes. If the brain was only predict-
ing a velocity with no feedback on error, then chances are the elastic forces trying to return 
muscles would mean we could not hold the position.

So it turns out that a number of things happen. First, there is a clear proof that we do 
not need to rely on visual stimulus to perform this operation. Just think about a point 
in space to the top left of your view, and you will find you can intentionally direct your 
gaze there by saccade. This ability to make voluntary saccades without the usual sensory 
input means we must maintain a mental image of the calculations involved. We call this 
mental image the efference copy. It means we can make an initial guess at velocity and 
start eye movement as soon as possible using the ballistic open loop. When we do receive 
visual information about our progress, it arrives late. However, because we know about 
our journey or where we should be at any time, the discrepancy between the two can be 
applied as a change in gain, strengthening or weakening a few synapses based on previous 
error. With a mostly linear velocity response, this change can scale the remaining journey 
sensibly helping tune mid-flight. With a 100 ms delay before onset and a total travel time 
of about 200 ms, this journey preplanning makes sense with respect to the timings.

It turns out that you get the same notion of a separate mental representation when you 
try to grasp something. Again, an internal representation is definitely at play. If you close 
your eyes and then go to pick something up, even blind and moving your head, you will 
still have reasonable success. You are once more running off a mental representation, open 
loop feedback only coming late from muscle sensors (proprioceptors) providing a notion 
of yourself in space.
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2.3.16 � Takeaway: Constrain to the Nervous System
We know that with the exception of reflexes, most response is comparatively slow. We 
should always bear in mind that some of the quickest processing at 200 ms or so is still 
6 frames at 30 frames per second. This means that distributing AI planning over frames is 
not only viable, it may be more biologically plausible.

We know that neural latency almost always prohibits direct feedback and indeed vari-
ous systems have worked around this with open loop feedback. This tells us a few things.

First, the flow of information at a single frame level is one-way, because there is no 
natural system for returning information. Hence, sensory input passes to the brain and 
then onto motor control. This leads to the notion of one-way information flow in the 
frame, through sense, think, and act stages [Laming 09].

By much the same reasoning, we should probably get out of the habit of requesting 
more information, such as a spatial query, midway through AI processing. If we need that 
info, it’s probably better precached with other sensory info for all to use. Considering our 
brain is comparatively sluggish anyway, we can easily spread this vast information gather-
ing over separate frames and threads.

We also know that in the majority of control cases, such as animation, movement by 
the nervous system involves initial planning, setting off, and then refining mid process. 
Consider a long-jumper trying to hit a launch board. They may do their best to plan for 
hitting the board upfront, but they are constantly reacting to change and error on the way 
up, which is why it is never an exact launch position. Preplanning exact paths by anima-
tions then, while it might give excellent results, may not be the most realistic. Some plan-
ning is clearly good, but continuous adaptation by techniques such as steering and velocity 
avoidance has its part to play [Laming 09].

Finally, we know that, although some information is stored in memory, signals to 
muscles (essentially our animation cues) are just the output of neurons being fired each 
frame. Hence, it should be possible to model these signals in AI without necessarily 
storing them. It is this that lies behind the reasoning for stack-based control signals 
[Laming 09].

There are obviously plenty more gems out there hidden inside the recommended 
reading. For example, in the high definition, facially close-up world of our AI character’s 
eye gaze, pupillary response will not only sell emotion [Mark 12] but will provide a more 
subtle alternative to the traditional notion of head tracking. With the addition of accurate 
latency, this should start to give anticipation for free!

2.4 � Conclusion

Ultimately this chapter is a primer in neurology. Its purpose is to introduce a world of neu-
roscience, neurons, and neural nets to those that may never have learned about them in 
detail before. By looking at the beauty encapsulated by the neuron, nervous system, and its 
signal processing potential by shape, make-up, and connections, it hopefully inspires you to 
think about the biophysical and psychological nature of other AI topics you may encounter.

In doing so it occasionally interrupted with a takeaway section, providing the history, 
background, and concepts behind some gems the author has used and written about 
before, illustrating the relevant reasoning and critical thinking that drove those decisions.
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In this article we discussed potential uses for diffusion and the importance and proper 
use of hysteresis. We also explored the perceptron, the base unit of neural networks, what 
it actually represents, and how we might make sensible use of it without going overboard. 
Finally, we looked at some AI architecture design considerations which can be extrapolated 
from the nervous system as a whole.

You should now have a simple overview that allows you to make sense of the various 
references and surrounding literature and realize the benefit of exploring outside the com-
puter science box.
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